

000 001 002 003 004 005 ECHOSAT: ESTIMATING CANOPY HEIGHT OVER 006 SPACE AND TIME 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Forest monitoring is critical for climate change mitigation. However, existing
026 global tree height maps provide only static snapshots and do not capture temporal
027 forest dynamics, which are essential for accurate carbon accounting. We introduce
028 ECHOSAT, a global and temporally consistent tree height map at 10 m resolution
029 spanning multiple years. To this end, we resort to multi-sensor satellite data to
030 train a specialized vision transformer model, which performs pixel-level temporal
031 regression. A self-supervised growth loss regularizes the predictions to follow
032 growth curves that are in line with natural tree development, including gradual
033 height increases over time, but also abrupt declines due to forest loss events such
034 as fires. Our experimental evaluation shows that our model improves state-of-the-
035 art accuracies in the context of single-year predictions. We also provide the first
036 global-scale height map that accurately quantifies tree growth and disturbances
037 over time. We expect ECHOSAT to advance global efforts in carbon monitoring
038 and disturbance assessment. The produced height maps will be made accessible
039 upon acceptance.

040 1 INTRODUCTION

041 Forests play a crucial role in the mitigation of climate change, absorbing 3.5 Pg of carbon per year,
042 which represents almost half of anthropogenic fossil fuel emissions (Pan et al., 2024). As global car-
043 bon emissions continue to increase, precise monitoring of forest carbon dynamics using up-to-date
044 information on forest health and carbon balance has become an essential for effective climate policy
045 and forest management decisions. Recent advances in satellite remote sensing and machine learning
046 have enabled automated forest carbon monitoring on country-to-global scales, using tree height as
047 a key proxy for estimating the so-called above-ground biomass (AGB) and, therefore, carbon stor-
048 age (Schwartz et al., 2023). Most of these height maps provide a static representation of forests at
049 a specific point in time and cannot be used to estimate year-to-year carbon absorption (Tolan et al.,
050 2024; Pauls et al., 2024; Lang et al., 2023; Potapov et al., 2021).

051 While such static snapshots of forests worldwide already depict a viable resource, they do not cap-
052 ture temporal dynamics such as tree growth or forest loss. Some studies provide such a temporal
053 monitoring of forests. However, they are often limited to large scale disturbances such as forest
054 losses due to big fires (Reiche et al., 2021; Hansen et al., 2013b). Small-scale height decreases
055 from degradation, individual tree mortality or forest thinning, however, are significantly smaller
056 and, hence, harder to detect. Additionally, very few studies have succeeded in retrieving realistic
057 year-to-year forest growth pattern at a high resolution (Turubanova et al., 2023; Schwartz et al.,
058 2025), and rely on single-year models independently applied to multiple years along with extensive
059 post-processing to achieve temporal consistency. None of the aforementioned approaches is based
060 on models that inherently learn forest temporal dynamics, thus, when no post-processing is applied,
061 this leads to unrealistic fluctuations at the pixel-level and poor temporal coherence in predictions.

062 In this work, we provide the first global tree height mapping approach at high resolution (10 m)
063 across multiple years. Our method combines a transformer-based temporal regression model with
064 an adapted loss that addresses sparse temporal supervision, where labels are limited both spatially
065 (not every pixel has ground truth) and temporally (each pixel often has only a single measurement),
066 while enforcing physically realistic growth patterns. By leveraging multi-sensor satellite data, we
067 produce a coherent global time series of tree height maps at unprecedented scale and resolution.

054 **Contributions.** Our main contributions are threefold. First, we present ECHOSAT, the first high-
 055 resolution (10 m) spatio-temporal tree height map covering the entire globe across seven years
 056 (2018–2024), which enables reliable monitoring of forest dynamics and disturbances at scale. Sec-
 057 ond, to enforce physically realistic forest growth patterns, we introduce a novel growth loss frame-
 058 work specifically designed for training temporal regression models with sparsely distributed and
 059 temporally irregular ground truth labels. Third, we demonstrate that our model inherently learns
 060 realistic temporal forest height dynamics without relying on post-processing, capturing both natu-
 061 ral growth and abrupt disturbances. We further demonstrate that our model outperforms existing
 062 approaches on single-year evaluations.

063 2 BACKGROUND

064 We construct a consistent global time series of forest heights from multiple satellite datasets. Remote
 065 sensing has long been used to complement and upscale forest inventory measurements (Tomppo
 066 et al., 2008), and more recently deep learning approaches have been introduced in this context. We
 067 briefly review these methods and highlight the relevance and impact of our work in this context.

068 2.1 VISION ARCHITECTURES AND SELF-SUPERVISED LEARNING

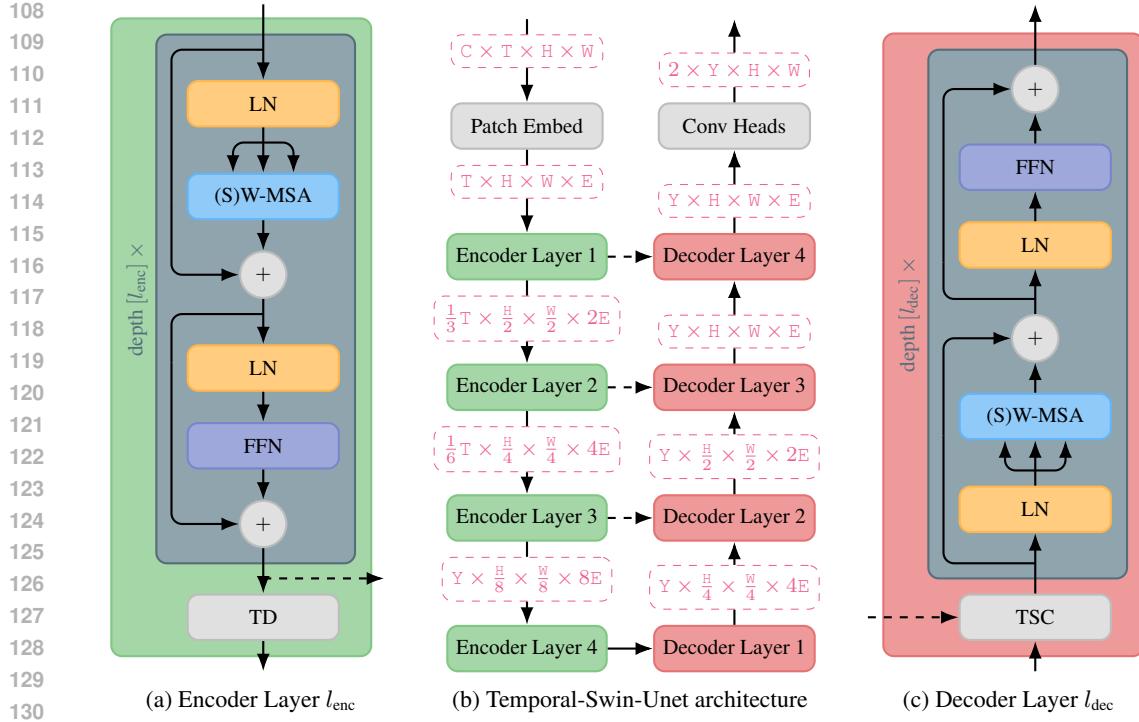
069 Recent advances in remote sensing have been driven by foundation models adapted from com-
 070 puter vision (Tseng et al., 2025; Fuller et al., 2023; Fayad et al., 2025; Astruc et al., 2025; Tseng
 071 et al., 2023). These models predominantly employ isotropic architectures (e.g., standard Vision
 072 Transformers) to leverage scalable self-supervised learning (SSL) objectives. The three dominant
 073 paradigms are: (1) Masked Image Modeling (MIM), such as MAE (He et al., 2022), which learns
 074 by reconstructing randomly masked patches; (2) Contrastive Learning, such as SimCLR(Chen et al.,
 075 2020), which optimizes for semantic invariance between different views or crops of an image; or (3)
 076 Joint-Embedding Prediction Architectures like I-JEPA (Assran et al., 2023) that predict the embed-
 077 ding of one part of the image using another part of the same image.

078 However, these paradigms present structural incompatibilities with hierarchical architectures (Liu
 079 et al., 2021; Cao et al., 2022), which are otherwise superior for dense prediction tasks. Specifically,
 080 the unstructured masking strategies central to MAE and I-JEPA disrupt the rigid grid alignment
 081 required by the shifted-window attention mechanisms in hierarchical transformers. Furthermore,
 082 contrastive objectives often enforce global semantic uniformity, suppressing the high-frequency,
 083 pixel-level spatial details required for fine-grained regression. Consequently, while Swin-based ar-
 084 chitectures offer inductive biases well-suited for dense canopy height estimation, they have seen
 085 limited adoption in large-scale remote sensing foundation models.

086 2.2 FOREST HEIGHT PREDICTION USING REMOTE SENSING DATA

087 Satellite remote sensing at high resolution employs mainly three types of sensors: optical, SAR
 088 (Synthetic Aperture Radar) and LiDAR (Light Detection And Ranging). Optical sensors operate
 089 passively, measuring sun’s reflected electromagnetic radiation across multiple spectral bands from
 090 visible to near-infrared wavelengths. For instance Sentinel-2 delivers multi-spectral optical imagery
 091 with up to 10 m spatial resolution and approximately 6-day revisit time depending on latitude, while
 092 Landsat provides historical multi-spectral data with 30 m spatial resolution, enabling long-term tem-
 093 poral analysis. In contrast, SAR sensors actively transmit microwave signals and measure the back-
 094 scattered energy, enabling data acquisition regardless of illumination conditions and cloud cover.
 095 LiDARs are light-emitting and receiving sensors that estimate distances by measuring the time it
 096 takes for the light to return to the sensor after being reflected on an object. The Global Ecosystem
 097 Dynamics Investigation (GEDI) mission, operated by the NASA and deployed on the International
 098 Space Station (ISS), provides spaceborne LiDAR measurements of forest vertical structure within
 099 25 m diameter footprints end of 2018 (Dubayah et al., 2022). This data can be used to get (above-
 100 ground) height measurements of the footprint. GPS and star tracker data are used to estimate the
 101 position of ISS and deduce geolocation of a measurement.

102 Due to it’s correlation with forest biomass, forest height mapping has gained significant attention
 103 in recent years, with numerous studies producing tree height maps at regional (Favrichon et al.,
 104 2025), national (Su et al., 2025; Schwartz et al., 2023), continental (Liu et al., 2023) and global



131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Architecture of the Temporal-Swin-Unet. Skip connections are depicted as dashed arrows. The shape of the tensor in between a layer is shown in magenta: C (channels), T (timesteps), H (height), W (width), Y (years), and E (embedding dimension). In addition to the Video Swin Transformer Blocks (Liu et al., 2022), Encoder Layers have a *Temporal Downsample* (TD) layer at the end, and Decoder Layers a *Temporal Skip Connection* (TSC) at the beginning.

scale. These maps typically combine remote sensing imagery with reference height measurements from spaceborne LiDAR systems such as GEDI or ICESat, or from airborne laser scanning (ALS) campaigns. The development of global tree height maps has progressed significantly in recent years. Potapov et al. (2021) pioneered the first global tree height map using Landsat data at 30 m resolution, GEDI measurements, and a random forest model. Subsequent work by Lang et al. (2023) improved spatial resolution to 10 m using Sentinel-2 data and convolutional neural networks. More recently, Pauls et al. (2024) developed a global map using a UNet architecture with a specialized loss function designed to improve robustness to noise, while Tolan et al. (2024) achieved individual tree-level detection using a DINOv2 model fine-tuned on 1 m+ Maxar data with ALS and GEDI labels.

Single-snapshot estimates cannot capture the effects of management or climate change over time. Temporal tree height mapping methods address this, with the simplest approach training single-year models independently on each year of remote sensing data (Kacic et al., 2023). A more sophisticated approach employs space-for-time substitution, where models trained on spatial variations are applied to temporal sequences under the assumption that similar spatial patterns correspond to similar temporal dynamics (Schwartz et al., 2025). A third approach uses classical machine learning methods with extensive post-processing to smooth temporal inconsistencies and reduce prediction uncertainty (Turubanova et al., 2023). These approaches easily *capture* abrupt large-scale height changes due to forest clearcuts or large disturbance events (fires, storms) but often overlook small disturbances at the tree level. Above all, they cannot produce consistent height time-series at the pixel level which preclude any detailed carbon dynamics analysis.

2.3 RELEVANCE AND IMPACT

Accurate mapping of tree height is a prerequisite for assessing biomass carbon storage and wood resources over the world forests. For monitoring forest changes under human and climate pressure, we need dynamic maps instead of static products. Furthermore, as most height loss instances come from

162 small scale events such as mortality occurring in clusters of trees, natural forest disturbances, and
 163 human activities including timber harvest, degradation and deforestation, a high spatial resolution is
 164 needed to capture the fine scale patterns of height decreases.

165 The new global annual forest height maps at 10 m resolution developed in this study with a deep
 166 learning model that can learn to reconstruct height changes not only from spatial gradients but also
 167 from temporal images represent a significant step forward that goes beyond previous global static
 168 maps and extends temporal change maps that were limited to few regions and used coarser resolution
 169 models. Our map was evaluated against height labels not used for training, but coming from the same
 170 space-borne LiDAR. Over pixels not affected by losses where forests are growing or regrowing after
 171 previous loss events, we also showed regular year on year increment of height that are consistent
 172 with ecological knowledge indicating that younger and shorter trees grow faster than taller ones.

173 The main remaining challenge is the verification of our predicted height changes against indepen-
 174 dent observations such as airborne LiDAR repeated campaigns, dense ground-based inventories
 175 census, which include revisits of hundreds of forest plots over time, and interpretation of high res-
 176 olution imagery for height loss events. Current approaches to temporal tree height mapping rely on
 177 post-processing techniques to achieve temporal consistency, as existing models are not inherently
 178 designed to learn realistic temporal dynamics. This represents a significant limitation, as models
 179 that could naturally incorporate temporal constraints and learn realistic growth patterns would pro-
 180 vide more accurate and physically meaningful predictions without requiring extensive smoothing or
 181 correction procedures.

182

183 3 APPROACH

184
 185 With the research gap in mind, we develop a new methodology to estimate tree height with coherent
 186 temporal predictions at global scale by training the model inherently to produce realistic temporal
 187 changes. The approach uses a model with two outputs heads and a two-step process: the first
 188 (reference) head is pre-trained using Huber loss and the second (prediction) head is finetuned on
 189 pseudo-labels created from the frozen first head. Further details on data processing, quality filtering,
 190 normalization, and the model architecture are provided in Appendix A.2.

191

192 3.1 DATA

193
 194 We integrate multi-temporal satellite data spanning 2018–2024 to enable global-scale temporal tree
 195 height mapping, with Sentinel-2 providing the primary image source at 10 m resolution.

196 **Multi-sensor Satellite Data.** We combine optical (Sentinel-2) and radar backscatter (Sentinel-
 197 1, ALOS PALSAR-2) data with auxiliary products (TanDEM-X DEM and forest classification).
 198 Sentinel-2 provides monthly images at 10 m resolution across 12 spectral bands, while radar data
 199 offers quarterly (Sentinel-1) and yearly (ALOS PALSAR-2) composites. GEDI LiDAR measure-
 200 ments serve as ground truth labels for 2019–2024 with approximately 25 m diameter footprints.

201 **Data Processing Pipeline.** We create a unified input tensor of shape $18 \times 84 \times 96 \times 96$ (channels
 202 \times timesteps \times height \times width) by temporally aligning different input data and spatially resampling
 203 all data to 10 m resolution. Quality filtering on GEDI ground truth ensures reliable measurements.

204

205 3.2 MODEL ARCHITECTURE

206
 207 Our model is based on the Swin Transformer (Liu et al., 2021) and leverages two key extensions: the
 208 Video Swin Transformer (Liu et al., 2022), designed for video input processing, and the Swin-Unet
 209 (Cao et al., 2022), tailored for semantic segmentation tasks.

210 **Temporal-Swin-Unet.** We combine the extensions from Cao et al. (2022) and Liu et al. (2022)
 211 with some small, but crucial, changes to perform pixel-wise regression on a time-series of images of
 212 shape $C \times T \times H \times W$. We call the resulting architecture Temporal-Swin-Unet, depicted in Figure 1.
 213 Different from most contemporary approaches, we adopt a patch size of 1×1 pixels, following
 214 Nguyen et al. (2025). The Patch Embed layer linearly projects each voxel¹ into the embedding

215

¹We define a voxel as a value in the 3D grid $T \times H \times W$, i.e. a pixel at a given timestep.

216 dimension E . Operating on the original resolution is crucial for our application, where every pixel
 217 corresponds to 10×10 meters. The model consists of four Encoder and Decoder layers each, which
 218 are connected via skip connections. Each Encoder and Decoder layer consists of multiple Video
 219 Swin Transformer Blocks (Liu et al., 2022). Except at the Unet’s lowest level, all Encoder layers
 220 end with a *Temporal Downsample* (TD) layer and all Decoder layers begin with a *Temporal Skip*
 221 *Connection* (TSC).

222 **TD and TSC layer.** The TD layer reduces the temporal and spatial dimension by applying a year-
 223 wise linear projection, concatenating the embeddings of four adjacent pixels, and performing another
 224 linear projection to double the embedding size. The TSC layer enriches the Decoder-features token-
 225 wise per year with the corresponding Encoder-features of the same year via a Transformer layer. At
 226 the end of the Decoder layer, we perform spatial upsampling to increase the spatial resolution by a
 227 factor of two.

228 **Conv Heads.** On top of the final Decoder layer we use two heads: the reference head, which is used
 229 for pretraining and projects the embeddings voxel-wise to scalar values; the prediction head is added
 230 later for fine-tuning and consists of three Conv3D layers with normalization and activation layers
 231 in between. Our model thus outputs a tensor of shape $2 \times Y \times H \times W$, being two canopy height
 232 predictions per year and pixel.

233 3.3 GROWTH LOSS

236 **Motivation and Notation.** We propose a self-supervised approach to achieve consistent growth
 237 curves, which are monotonically increasing, but allow for sharp cut-offs in disturbance situations.
 238 Let $\mathbf{Y}^{\text{ref}} \in \mathbb{R}^{Y \times H \times W}$ and $\mathbf{Y}^{\text{pred}} \in \mathbb{R}^{Y \times H \times W}$ be the outputs of the reference head and the prediction
 239 head. Furthermore, let $\mathbf{z}^{\text{ref}} := \mathbf{Y}^{\text{ref}}_{\cdot, h, w} \in \mathbb{R}^Y$ and $\mathbf{z}^{\text{pred}} := \mathbf{Y}^{\text{pred}}_{\cdot, h, w} \in \mathbb{R}^Y$ be the predicted time series
 240 at the pixel $(h, w) \in \{1, \dots, H\} \times \{1, \dots, W\}$. In short, the loss works as follows: it fits a regression
 241 on \mathbf{z}^{ref} and uses the fitted values as pseudo-labels for \mathbf{z}^{pred} . The regression function is either
 242 linear or a combination of two linear functions (pre- and post-disturbance) in case a disturbance is
 243 detected, where all slopes are forced to lie in a reasonable interval for tree growth, e.g. in $[s_{\min} =$
 244 $0 \text{ m/year}, s_{\max} = 3 \text{ m/year}]$.

245 **Disturbance Indicator.** A disturbance is considered to occur in $\mathbf{z}^{\text{ref}} \in \mathbb{R}^Y$ when a) tree height
 246 decreased by more than 50% and more than 4 m and b) tree height decreased to less than 10 m
 247 within two years.² Thus, we define the set of pre-disturbance years $\mathbb{Y}_{\text{dstb}}(\mathbf{z}^{\text{ref}})$ to be

$$\mathbb{Y}_{\text{dstb}}(\mathbf{z}^{\text{ref}}) = \{y \in \{1, \dots, Y-1\} \mid \mathbf{z}_{y+1}^{\text{ref}} \leq \min(0.5 \cdot \mathbf{z}_y^{\text{ref}}, \mathbf{z}_y^{\text{ref}} - 4), \min(\mathbf{z}_{y+1}^{\text{ref}}, \mathbf{z}_{y+2}^{\text{ref}}) \leq 10\}.$$

248 The local disturbance indicator, defined as the final year preceding a disturbance, is defined by

$$\mathbb{I}_{\text{dstb,loc}}(\mathbf{z}^{\text{ref}}) := \begin{cases} Y & \text{if } \mathbb{Y}_{\text{dstb}}(\mathbf{z}^{\text{ref}}) = \emptyset \\ \min(\mathbb{Y}_{\text{dstb}}(\mathbf{z}^{\text{ref}})) & \text{else} \end{cases} \in \{1, \dots, Y\}.$$

253 Combining the pixel-wise local disturbance indicator, we can build an image-wise local disturbance
 254 indicator $\mathbb{I}_{\text{dstb,loc}}(\mathbf{Y}^{\text{ref}}) \in \{1, \dots, Y\}^{H \times W}$. The disturbance indicator is finally defined as

$$\mathbb{I}_{\text{dstb}}(\mathbf{Y}^{\text{ref}}) = \text{MinPool}_{3 \times 3}(\mathbb{I}_{\text{dstb,loc}}(\mathbf{Y}^{\text{ref}})) \in \{1, \dots, Y\}^{H \times W}. \quad (1)$$

257 **Constrained Linear Regression.** For some $N \in \mathbb{N}$ and vector $\mathbf{z} \in \mathbb{R}^N$, we define the con-
 258 strained linear regression vector $\hat{\mathbf{z}} \in \mathbb{R}^N$ with respect to a minimal and maximal slope $s_{\min} < s_{\max}$
 259 as follows. Let $\tilde{s} \in \mathbb{R}$ be the slope of the simple linear regression model for the dataset
 260 $\{(1, \mathbf{z}_1), (2, \mathbf{z}_2), \dots, (N, \mathbf{z}_N)\}$. Then the slope s , the intercept b and $\hat{\mathbf{z}}$ are defined by

$$\begin{aligned} s &:= \min(\max(\tilde{s}, s_{\min}), s_{\max}) \in [s_{\min}, s_{\max}] \\ b &:= \bar{\mathbf{z}} - s \cdot \frac{N+1}{2} \in \mathbb{R} \text{ with } \bar{\mathbf{z}} := \frac{1}{N} \sum_{n=1}^N \mathbf{z}_n \\ \hat{\mathbf{z}} &:= s \cdot [1, 2, \dots, N]^T + b \in \mathbb{R}^N. \end{aligned}$$

267 ²As no global temporal tree height dataset is available, validation of these set values is difficult, hence we
 268 solely rely on domain expert knowledge.

269 ³Please note that for the majority of tree height prediction time series, there is at most one disturbance year
 and the minimum is just taken to take care of the other rare cases.

270 Table 1: Comparison of global-scale methods for 2020 regarding MAE (m), MSE (m²), RMSE (m),
 271 MAPE (%), R^2 and R_{all}^2 (on all labels, including labels below 5 m). **IQR is given in square brackets.**
 272

Method	MAE ↓	MSE ↓	RMSE ↓	MAPE ↓	$R^2 \uparrow$	$R_{\text{all}}^2 \uparrow$
Potapov et al. (2021)	9.11 [7.73]	185.52 [107.99]	13.62 [7.73]	54.90 [78.99]	0.50	0.70
Lang et al. (2023)	7.97 [6.67]	143.78 [81.04]	11.99 [6.67]	53.33 [76.84]	0.52	0.71
Pauls et al. (2024)	6.85 [6.41]	138.19 [60.75]	11.76 [6.41]	34.20 [33.16]	0.51	0.73
Tolan et al. (2024)	11.89 [9.09]	260.28 [182.25]	16.13 [9.09]	68.78 [57.80]	0.45	0.64
Ours	5.85 [4.90]	118.07 [36.16]	10.87 [4.90]	30.20 [33.32]	0.59	0.77

273
 274
 275
 276
 277
 278
 279
 280
 281 **Growth loss.** Pseudo-labels are created by performing piecewise constrained linear regression on
 282 the reference time series. Let $y := \mathbb{I}_{\text{dstb}}(\mathbf{Y}^{\text{ref}})_{h,w} \in \{1, 2, \dots, Y\}$ be the detected pre-disturbance
 283 year of the reference output and split \mathbf{z}^{ref} into pre- and post-disturbance vectors, that is

$$\mathbf{z}_{\text{pre}}^{\text{ref}} := [\mathbf{z}_1^{\text{ref}}, \dots, \mathbf{z}_y^{\text{ref}}]^T \in \mathbb{R}^y \text{ and } \mathbf{z}_{\text{post}}^{\text{ref}} := [\mathbf{z}_{y+1}^{\text{ref}}, \dots, \mathbf{z}_Y^{\text{ref}}]^T \in \mathbb{R}^{Y-y}.$$

284 Then the pseudo-labels are defined by concatenating the constrained linear regression vectors
 285 $\hat{\mathbf{z}}_{\text{pre}}^{\text{ref}}, \hat{\mathbf{z}}_{\text{post}}^{\text{ref}}$ for pre- and post-disturbance vectors, thus
 286

$$\hat{\mathbf{z}}^{\text{ref}} := [\hat{\mathbf{z}}_{\text{pre}}^{\text{ref}}, \hat{\mathbf{z}}_{\text{post}}^{\text{ref}}]^T \in \mathbb{R}^Y.$$

287 Finally, the growth loss measures the distance between pseudo-labels and predictions, i.e.
 288

$$\mathcal{L}_{\text{growth}}(\mathbf{z}^{\text{ref}}, \mathbf{z}^{\text{pred}}) := \frac{1}{Y} \|\hat{\mathbf{z}}^{\text{ref}} - \mathbf{z}^{\text{pred}}\|. \quad (2)$$

296 3.4 MODEL TRAINING

297 Training a spatio-temporal model at global scale requires careful design of the dataset construction
 298 and optimization strategy. The large size and geographic diversity of the input data demand a
 299 sampling strategy that balances coverage of relevant forested areas with computational feasibility,
 300 both for training and global-scale inference. Further, the sparse and (temporally and spatially) noisy
 301 nature of GEDI supervision necessitates specialized training objectives and stable optimization.
 302

303 **Dataset.** Building on the multi-sensor inputs described in Section 3.1, we assembled a large-scale
 304 training dataset by sampling spatio-temporal patches centered on GEDI footprints. From each of the
 305 13.000 Sentinel-2 tiles over land with GEDI coverage, we generated up to 230 patches depending on
 306 the availability of valid GEDI labels. In non-forested regions with limited relevance (e.g., Sahara)
 307 we restricted the number of patches to a maximum of three to reduce computational overhead. The
 308 resulting dataset contains approximately 3 million multi-sensor samples, totaling approx. 50 TB of
 309 input data. For model testing, we selected one hold-out sample per Sentinel-2 tile, ensuring broad
 310 spatio-temporal coverage across continents and biomes.

311 **Training Procedure.** We trained our model on 8 NVIDIA H200 GPUs for about one week with the
 312 hyperparameters detailed in Table 6 in the Appendix A.4. We first pretrained the model using the
 313 Huber loss on the reference head for 400k iterations with a batch size of 16. Subsequent finetuning
 314 for 47k iterations and a batch size of 8 was performed by training the prediction head with the growth
 315 loss detailed in Section 3.3, while freezing the rest of the model parameters.

316 4 RESULTS

317 We evaluate ECHOSAT through a comprehensive three-part assessment. Our evaluation uses GEDI
 318 labels filtered according to the quality criteria described in Appendix A.2.1, ensuring a reliable
 319 ground truth. We first assess prediction accuracy against GEDI labels, then analyze the temporal
 320 dynamics and growth patterns captured by our model, and finally compare our 2020 predictions
 321 against existing single-year baselines. When not specified otherwise, reported metrics exclude labels
 322 below 5 m following Hansen et al. (2013a), which defines trees as vegetation exceeding 5 m height.
 323

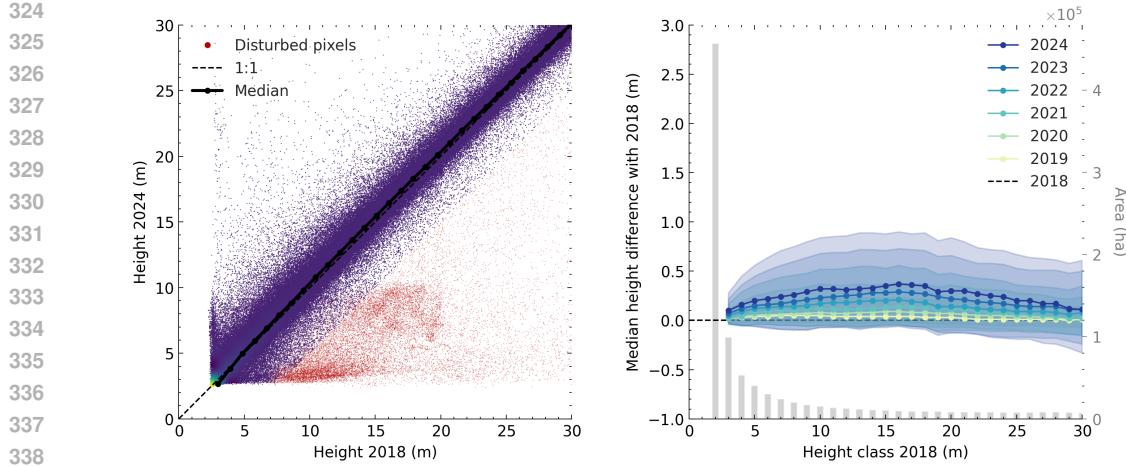


Figure 2: **Left.** Scatter plot showing the predicted height in 2018 against 2024. Disturbed pixels are identified by a decrease of more than 5 m between 2018 and 2024, marked red and excluded from the median aggregation. **Right.** Median height difference from 2018 to each year, binned in 1 m height classes. The right y-axis shows the height class distribution and area for these classes.

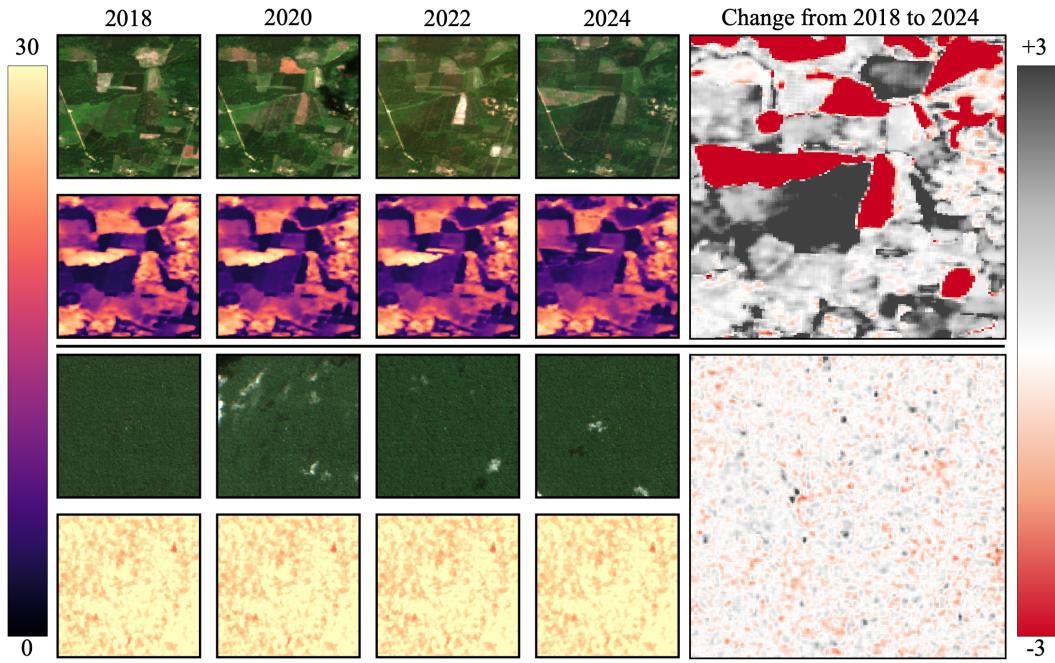


Figure 3: Examples of predicted tree height dynamics for two contrasting regions. **Top:** Le Landes (France) showing disturbance and regrowth patterns. **Bottom:** Amazonas (Brazil) with largely stable forest structure. Each block shows optical imagery (top row), predicted tree height (second row), and corresponding change maps from 2018 to 2024 (right column).

4.1 CANOPY HEIGHT ACCURACY

For 2019-2022, MAE values range from 5.36 m to 6.27 m, indicating similar prediction accuracy across years. However, 2023-2024 show notable variations: MAE increases to 5.79 m in 2023, then decreases significantly to 4.89 m in 2024. This pattern correlates with GEDI's operational status, as the instrument was inoperational from March 17, 2023, through April 22, 2024, resulting in different label distributions and availability patterns. Details in Table 4 in Appendix A.3

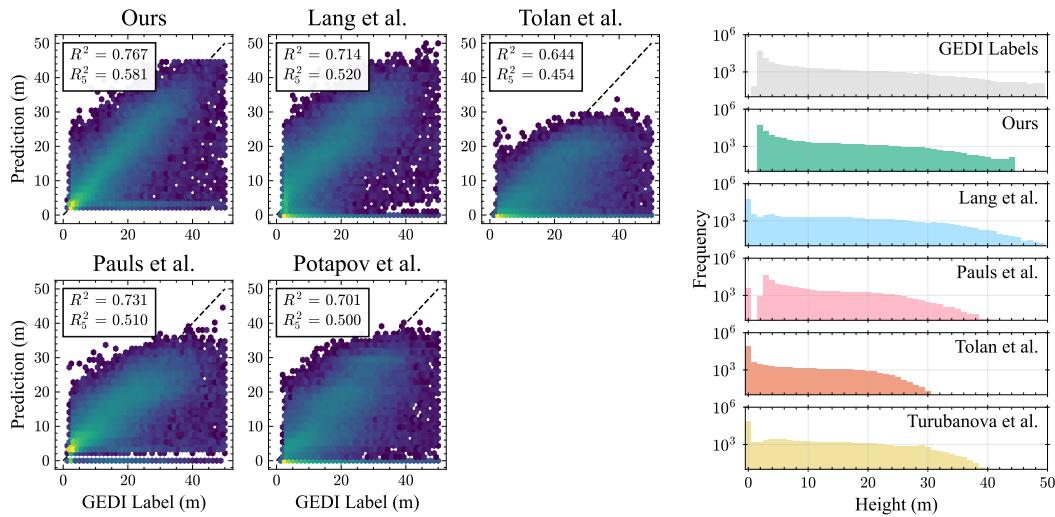


Figure 4: Left: Scatterplots showing the predicted height for 2020 vs GEDI labels with the correlation coefficient (R^2) and the correlation coefficient for labels exceeding 5 m (R_5^2) indicated for each plot. Right: Histogram of the (predicted) values.

The substantial gap between MAE (4.89 m–6.27 m) and RMSE (8.59 m–11.21 m) indicates the presence of large prediction errors, suggesting that while most predictions are reasonably accurate, occasional severe errors occur. This error distribution likely stems from remaining noise in GEDI labels after filtering, particularly cases where LiDAR waveforms fail to penetrate dense canopies, resulting in ground-level measurements (0 m) for trees that may actually exceed 30 m in height.

4.2 CANOPY HEIGHT GROWTH/DECLINE

Due to the sparse temporal and spatial distribution of GEDI labels, a temporal validation with GEDI is not possible. Instead, we focus on analyzing the temporal dynamics captured by our model to assess whether the predictions exhibit realistic forest growth patterns.

The left part of Figure 2 presents a scatterplot of predicted heights in 2018 versus 2024, with median values plotted for each 1 m height bin. Pixels are marked disturbed when the height decreases by more than 5 m over the time span. The right part of Figure 2 shows median height differences and lower and upper quartile for each 1 m height class from 2018 to each subsequent year, demonstrating year-to-year growth variations. The analysis reveals consistent growth across all height classes, with taller trees exhibiting slower growth rates, consistent with established forest growth patterns. Figure 3 shows the predictions and change for two areas: Highly active forests in Le Landes (France) and Amazonas rainforest (Brazil). In the Le Landes forest in France, which is well known for its intensive wood production and therefore fast-growing tree species, the predictions reveal many disturbances — most likely caused by logging activities — and phases of regrowth. In contrast, the predictions for the Amazonas region remain largely stable, showing very little variation across the different years. Satellite images from 2018 to 2024 together with time-series of pixel-wise predictions for five selected pixels around a disturbance in Le Landes are depicted in Figure 9 in Appendix A.3. Please note that our model is able to predict consistent canopy height over time, even for the first year 2018, where GEDI labels are not available.

4.3 COMPARISON AGAINST EXISTING MAPS

While no global-scale temporal tree height maps exist, four single-year approaches provide suitable baselines for comparison: Tolan et al. (2024) (DINOv2-based, 1 m resolution), Potapov et al. (2021) (Random Forest, 30 m Landsat), Lang et al. (2023) (CNN, 10 m Sentinel-2), and Pauls et al. (2024) (UNet, 10 m Sentinel-2). We compare our 2020 predictions against these baselines using the same MAE, MSE, RMSE, MAPE and two R^2 metrics on our test samples. All baseline maps were downloaded from Google Earth Engine, rescaled to 10 m using bilinear interpolation, and warped

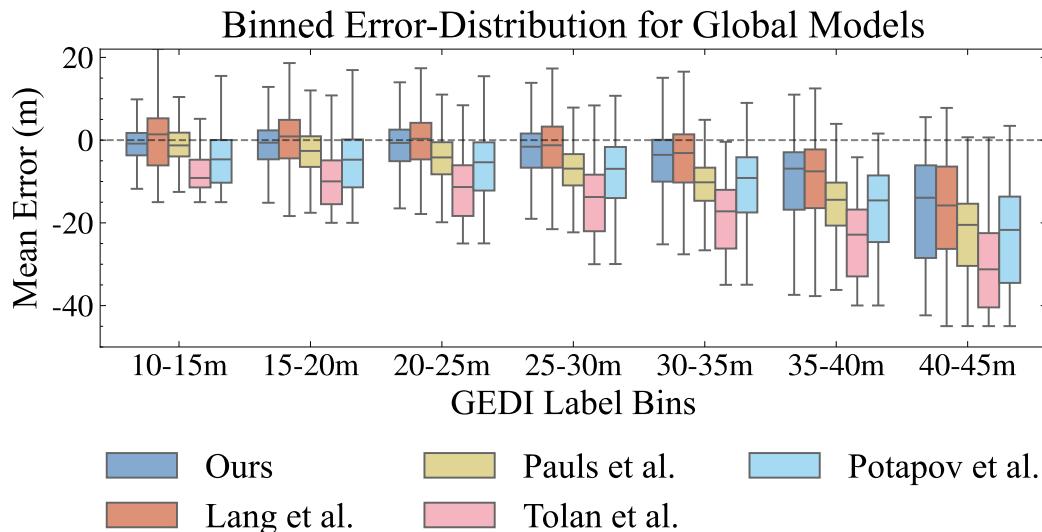


Figure 5: Error distribution analysis across height classes (5 m bins) for all baseline methods. Box-plots show mean absolute error for each height class, revealing that tall tree prediction remains challenging across all approaches, with errors increasing substantially for heights above 25 m.

to the corresponding Sentinel-2 tile CRS. Table 1 reports the quantitative comparison, showing that ECHOSAT consistently outperforms the other maps, while also reducing the variance in its predictions.

Figure 6 shows a visual comparison of all maps in 3 distinct regions. Although the map by Tolan et al. (2024) is resampled to 10 m, it visually still has a higher resolution and can be used very well for the detection of smaller tree patches. The map by Potapov et al. (2021) uses 30 m Landsat data as input and therefore the map fails to identify some trees, however the accuracy and tree height labels is better. Lang et al. (2023), Pauls et al. (2024) and our model use Sentinel-2 as input and can detect most smaller forest patches, but also have a higher accuracy on tree height labels. Pauls et al. (2024) and our model show finer structure in the prediction.

The scatterplots and histograms in Figure 4 and 5 reveal that Tolan et al. (2024), Pauls et al. (2024) and Potapov et al. (2021) saturate between 30 m and 35 m, while Lang et al. (2023) and our map can predict beyond that. As already indicated by the correlation coefficient, also the body of our scatterplot is narrower than the one by Lang et al. (2023). Although our predictions stop at roughly 45 m, comparing them to the GEDI distribution reveals a closer match than for Lang et al. (2023). Further figures are provided in Appendix A.3).

5 CONCLUSION

Our approach addresses the fundamental limitation of existing static forest height products through a novel growth loss framework that inherently enforces physically realistic forest dynamics without requiring post-processing. By leveraging multi-sensor satellite data and our Temporal-Swin-Unet, we demonstrate how temporal forest monitoring can be achieved at unprecedented scale and resolution. Our evaluation shows that different height classes of trees have varying growth rates, consistent with existing literature. On a single-year evolution comparing our map to other existing ones we show strong performance and improved accuracy in all evaluated metrics. This work provides essential capabilities for climate change mitigation, carbon accounting, and forest disturbance assessment, advancing our ability to monitor and understand global forest dynamics. The produced maps will be made available upon acceptance.

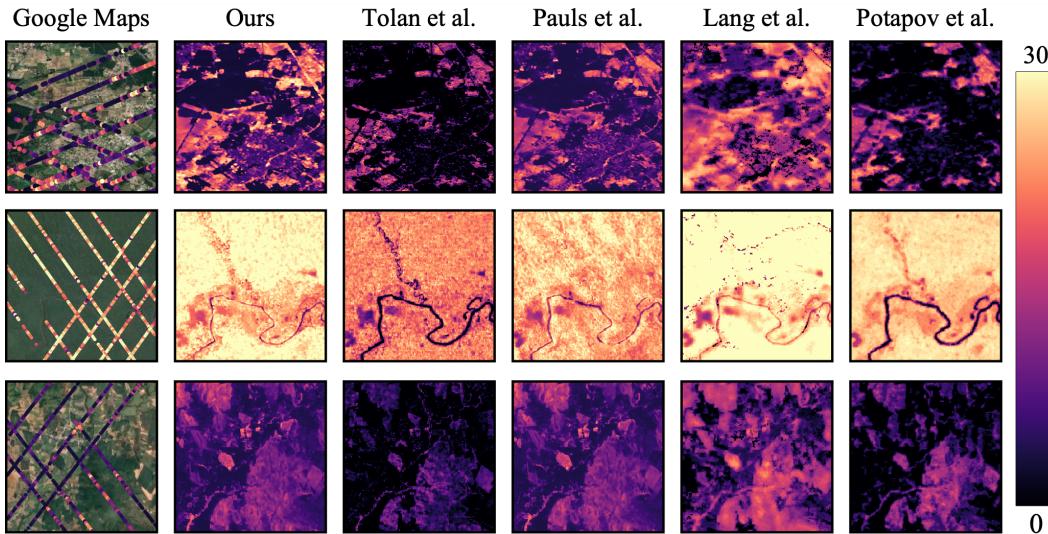


Figure 6: Qualitative comparison across three geographically diverse locations. The first column shows Google Maps imagery for spatial context, while subsequent columns display predicted tree heights (0 m–30 m range) for each method. This visual assessment reveals differences in spatial detail, forest boundary detection, and height estimation accuracy across the various approaches.

5.1 LIMITATIONS

The proposed ECHOSAT maps have several limitations, which we sketch here:

Ground truth constraints. GEDI labels exhibit systematic noise in cloudy regions (e.g., tropical rainforests) and for trees exceeding 50 m, where LiDAR signals fail to accurately reach the ground. GEDI cannot reliably measure vegetation below 5 m, limiting predictions for shrubs and small trees. The sparse spatial coverage (25 m footprints at irregular spacing) means most pixels lack direct supervision, requiring substantial spatial generalization. As GEDI began operations in late 2018, predictions for that year lack corresponding training labels.

Detecting growth and disturbances. Smaller annual growth increments often fall within model and data uncertainty, making small height changes difficult to detect reliably. Our fixed disturbance criteria effectively capture clear-cuts and major fires but may miss gradual degradation, selective logging, or scattered tree mortality.

Validation. GEDI’s sparse temporal coverage does not allow direct validation of year-to-year height changes. While Section 4.2 shows our predictions follow realistic ecological growth patterns, validation against independent repeated observations (airborne LiDAR campaigns, permanent forest plots) is needed. The seven-year timespan (2018–2024) limits assessment of long-term dynamics and multi-decadal carbon accumulation patterns.

540 REFERENCES
541

542 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
543 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
544 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
545 *Pattern Recognition*, pp. 15619–15629, 2023.

546 Guillaume Astruc, Nicolas Gonthier, Clement Mallet, and Loic Landrieu. Anysat: One earth obser-
547 vation model for many resolutions, scales, and modalities. In *Proceedings of the Computer Vision*
548 *and Pattern Recognition Conference*, pp. 19530–19540, 2025.

549 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*
550 *arXiv:1607.06450*, 2016.

552 Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
553 Swin-unet: Unet-like pure transformer for medical image segmentation. In *European conference*
554 *on computer vision*, pp. 205–218. Springer, 2022.

555 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
556 contrastive learning of visual representations. In *International conference on machine learning*,
557 pp. 1597–1607. PMLR, 2020.

559 Ralph Dubayah, John Armston, Sean P. Healey, Jamis M. Bruening, Paul L. Patterson, James R.
560 Kellner, Laura Duncanson, Svetlana Saarela, Göran Ståhl, Zhiqiang Yang, Hao Tang, J. Bryan
561 Blair, Lola Fatoyinbo, Scott Goetz, Steven Hancock, Matthew Hansen, Michelle Hofton, George
562 Hurt, and Scott Luthcke. GEDI launches a new era of biomass inference from space. *Environmental*
563 *Research Letters*, 17(9):095001, August 2022. ISSN 1748-9326. doi: 10.1088/1748-9326/
564 ac8694.

566 Samuel Favrichon, Jake Lee, Yan Yang, Ricardo Dalagnol, Fabien Wagner, Le Bienfaiteur Sagang,
567 and Sassan Saatchi. Monitoring changes of forest height in California. *Frontiers in Remote*
568 *Sensing*, 5, January 2025. ISSN 2673-6187. doi: 10.3389/frsen.2024.1459524.

569 Ibrahim Fayad, Max Zimmer, Martin Schwartz, Fabian Gieseke, Philippe Caius, Gabriel Belouze,
570 Sarah Brood, Aurelien De Truchis, and Alexandre d’Aspremont. Dunia: Pixel-sized embeddings
571 via cross-modal alignment for earth observation applications. *arXiv preprint arXiv:2502.17066*,
572 2025.

574 Anthony Fuller, Koreen Millard, and James Green. Croma: Remote sensing representations with
575 contrastive radar-optical masked autoencoders. *Advances in Neural Information Processing Sys-*
576 *tems*, 36:5506–5538, 2023.

577 M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V.
578 Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and
579 J. R. G. Townshend. High-resolution global maps of 21st-century forest cover change. *Science*,
580 342(6160):850–853, 2013a. doi: 10.1126/science.1244693. URL <https://www.science.org/doi/10.1126/science.1244693>.

583 M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau,
584 S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice,
585 and J. R. G. Townshend. High-Resolution Global Maps of 21st-Century Forest Cover Change.
586 *Science*, 342(6160):850–853, November 2013b. ISSN 0036-8075, 1095-9203. doi: 10.1126/
587 science.1244693.

588 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
589 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
590 *vision and pattern recognition*, pp. 16000–16009, 2022.

592 Patrick Kacic, Frank Thonfeld, Ursula Gessner, and Claudia Kuenzer. Forest Structure Charac-
593 terization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data.
Remote Sensing, 15(8):1969, January 2023. ISSN 2072-4292. doi: 10.3390/rs15081969.

594 Nico Lang, Walter Jetz, Konrad Schindler, and Jan Dirk Wegner. A high-resolution canopy height
 595 model of the Earth. *Nature Ecology & Evolution*, pp. 1–12, September 2023. ISSN 2397-334X.
 596 doi: 10.1038/s41559-023-02206-6.

597 Siyu Liu, Martin Brandt, Thomas Nord-Larsen, Jerome Chave, Florian Reiner, Nico Lang, Xiaoye
 598 Tong, Philippe Ciais, Christian Igel, Adrian Pascual, Juan Guerra-Hernandez, Sizhuo Li, Maurice
 599 Mugabowindekwe, Sassan Saatchi, Yuemin Yue, Zhengchao Chen, and Rasmus Fensholt. The
 600 overlooked contribution of trees outside forests to tree cover and woody biomass across Europe.
 601 *Science Advances*, 9(37):eadh4097, September 2023. doi: 10.1126/sciadv.adh4097.

602 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 603 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 604 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

605 Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
 606 former. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 607 pp. 3202–3211, 2022.

608 Duy Kien Nguyen, Mido Assran, Unnat Jain, Martin R. Oswald, Cees G. M. Snoek, and Xinlei
 609 Chen. An image is worth more than 16x16 patches: Exploring transformers on individual pixels.
 610 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tjNf0L8QjR>.

611 Yude Pan, Richard A. Birdsey, Oliver L. Phillips, Richard A. Houghton, Jingyun Fang, Pekka E.
 612 Kauppi, Heather Keith, Werner A. Kurz, Akihiko Ito, Simon L. Lewis, Gert-Jan Nabuurs, Anatoly
 613 Shvidenko, Shoji Hashimoto, Bas Lerink, Dmitry Schepaschenko, Andrea Castanho, and Daniel
 614 Murdiyarso. The enduring world forest carbon sink. *Nature*, 631(8021):563–569, July 2024.
 615 ISSN 1476-4687. doi: 10.1038/s41586-024-07602-x.

616 Jan Pauls, Max Zimmer, Una M. Kelly, Martin Schwartz, Sassan Saatchi, Philippe Ciais, Sebastian
 617 Pokutta, Martin Brandt, and Fabian Gieseke. Estimating Canopy Height at Scale, June 2024.

618 Peter Potapov, Xinyuan Li, Andres Hernandez-Serna, Alexandra Tyukavina, Matthew C. Hansen,
 619 Anil Kommareddy, Amy Pickens, Svetlana Turubanova, Hao Tang, Carlos Edibaldo Silva, John
 620 Armston, Ralph Dubayah, J. Bryan Blair, and Michelle Hofton. Mapping Global Forest Canopy
 621 Height through Integration of GEDI and Landsat Data. *Remote Sensing of Environment*, 253:
 622 112165, February 2021. ISSN 00344257. doi: 10.1016/j.rse.2020.112165.

623 Johannes Reiche, Adugna Mullissa, Bart Slagter, Yaqing Gou, Nandin-Erdene Tsendlazar, Chris-
 624 telle Odongo-Braun, Andreas Vollrath, Mikaela J. Weisse, Fred Stolle, Amy Pickens, Gennadii
 625 Donchyts, Nicholas Clinton, Noel Gorelick, and Martin Herold. Forest disturbance alerts for the
 626 Congo Basin using Sentinel-1. *Environmental Research Letters*, 16(2):024005, January 2021.
 627 ISSN 1748-9326. doi: 10.1088/1748-9326/abd0a8.

628 Martin Schwartz, Philippe Ciais, Aurélien De Truchis, Jérôme Chave, Catherine Ottlé, Cedric Vega,
 629 Jean-Pierre Wigneron, Manuel Nicolas, Sami Jouaber, Siyu Liu, Martin Brandt, and Ibrahim
 630 Fayad. FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at
 631 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics
 632 Investigation (GEDI) data with a deep learning approach. *Earth System Science Data*, 15(11):
 633 4927–4945, November 2023. ISSN 1866-3508. doi: 10.5194/essd-15-4927-2023.

634 Martin Schwartz, Philippe Ciais, Ewan Sean, Aurélien De Truchis, Cédric Vega, Nikola Besic,
 635 Ibrahim Fayad, Jean-Pierre Wigneron, Sarah Brood, Agnès Pelissier-Tanon, Jan Pauls, Gabriel
 636 Belouze, and Yidi Xu. Retrieving yearly forest growth from satellite data: A deep learning based
 637 approach. *Remote Sensing of Environment*, 330:114959, December 2025. ISSN 00344257. doi:
 638 10.1016/j.rse.2025.114959.

639 Yang Su, Martin Schwartz, Ibrahim Fayad, Mariano García, Miguel A. Zavala, Julián Tijerín-
 640 Triviño, Julen Astigarraga, Verónica Cruz-Alonso, Siyu Liu, Xianglin Zhang, Songchao Chen,
 641 François Ritter, Nikola Besic, Alexandre d’Aspremont, and Philippe Ciais. Canopy height and
 642 biomass distribution across the forests of Iberian Peninsula. *Scientific Data*, 12(1):678, April
 643 2025. ISSN 2052-4463. doi: 10.1038/s41597-025-05021-9.

648 Jamie Tolan, Hung-I Yang, Benjamin Nosarzewski, Guillaume Couairon, Huy V. Vo, John Brandt,
 649 Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Theo Moutakanni, Piotr Bo-
 650 janowski, Tracy Johns, Brian White, Tobias Tiecke, and Camille Couprie. Very high resolution
 651 canopy height maps from RGB imagery using self-supervised vision transformer and convolu-
 652 tional decoder trained on aerial lidar. *Remote Sensing of Environment*, 300:113888, January 2024.
 653 ISSN 0034-4257. doi: 10.1016/j.rse.2023.113888.

654 Erkki Tomppo, Håkan Olsson, Håkan Olsson, Göran Ståhl, Mats Nilsson, Olle Hagner, and Matti
 655 Katila. Combining national forest inventory field plots and remote sensing data for forest
 656 databases. *Remote Sensing of Environment*, 112(5):1982–1999, May 2008. doi: 10.1016/j.rse.
 657 2007.03.032.

658 Gabriel Tseng, Ruben Cartuyvels, Ivan Zvonkov, Mirali Purohit, David Rolnick, and Hannah
 659 Kerner. Lightweight, pre-trained transformers for remote sensing timeseries. *arXiv preprint*
 660 *arXiv:2304.14065*, 2023.

661 Gabriel Tseng, Anthony Fuller, Marlena Reil, Henry Herzog, Patrick Beukema, Favyen Bastani,
 662 James R Green, Evan Shelhamer, Hannah Kerner, and David Rolnick. Galileo: Learning global
 663 & local features of many remote sensing modalities. *arXiv preprint arXiv:2502.09356*, 2025.

664 Svetlana Turubanova, Peter Potapov, Matthew C. Hansen, Xinyuan Li, Alexandra Tyukavina,
 665 Amy H. Pickens, Andres Hernandez-Serna, Adrian Pascual Arranz, Juan Guerra-Hernandez,
 666 Cornelius Senf, Tuomas Häme, Ruben Valbuena, Lars Eklundh, Olga Brovkina, Barbora Navrátilová,
 667 Jan Novotný, Nancy Harris, and Fred Stolle. Tree canopy extent and height change in Europe,
 668 2001–2021, quantified using Landsat data archive. *Remote Sensing of Environment*, 298:113797,
 669 December 2023. ISSN 0034-4257. doi: 10.1016/j.rse.2023.113797.

670 Yuxin Wu and Kaiming He. Group normalization. In *Computer Vision – ECCV 2018: 15th European
 671 Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part XIII*, pp. 3–19, Berlin,
 672 Heidelberg, 2018. Springer-Verlag. ISBN 978-3-030-01260-1. doi: 10.1007/978-3-030-01261-8-
 673 1. URL https://doi.org/10.1007/978-3-030-01261-8_1.

674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A APPENDIX**
703704 **A.1 USE OF LARGE LANGUAGE MODELS**
705706 Large language models were used to aid in writing (polishing text), generating code for plots, and
707 implementing standard components. No novel research ideas or results were produced by LLMs.
708709 **A.2 METHODOLOGY**
710711 **A.2.1 DATA**712 Here we describe the used data sources and their processing in more detail. [Table 2 provides an](#)
713 [overview](#).
714715 **Sentinel-2 Optical Data.** We use all 12 spectral bands from Sentinel-2 L2A products, which provide
716 atmospheric correction and cloud probability estimates. For each year, we select one image per
717 calendar month based on the highest percentage of valid pixels (excluding cloudy and black pixels
718 as identified by the Sen2Core algorithm). [The Sentinel-2 10 m bands serve as the foundation for](#)
719 [our dataset, hence](#) bands with 20 m and 60 m native resolution are upsampled to 10 m using nearest
720 neighbor interpolation. Values are normalized to the range [-1, +1] using band-specific scaling
721 factors: bands 1-4 scaled from [0, 2000], bands 6-9 from [0, 6000], band 0 from [0, 1000], and
722 bands 5, 10-11 from [0, 4000].
723724 **Sentinel-1 Radar Data.** We utilize C-band synthetic aperture radar data with 10 m spatial resolution,
725 processing quarterly median composites of VH polarization for both ascending and descending
726 orbits. Digital numbers are converted to backscatter coefficients (dB) and scaled from [-50, +1] to
727 [-1, +1]. [The downloaded images from Google Earth Engine are already geospatially aligned to](#)
728 [the 10 m Sentinel-2 bands, hence can just be stacked. To align with monthly](#) Sentinel-2 data, each
729 quarterly composite is duplicated across the corresponding three months.
730731 **ALOS PALSAR-2 Radar Data.** We incorporate L-band synthetic aperture radar data with 30 m
732 spatial resolution, using yearly median composites of HH and HV polarizations. Digital numbers are
733 converted to backscatter coefficients (dB) and scaled from [-50, +1] to [-1, +1]. [After reprojection](#)
734 [and upsampling using bilinear interpolation with the pixels being aligned to the Sentinel-2 10 m](#)
735 [bands \(using gdalwarp's -tap option\), the yearly composite is duplicated across all 12 months](#)
736 [to maintain temporal consistency.](#)
737738 **Tandem-X Data.** We utilize two products from the TanDEM-X mission: (1) a 12 m resolution
739 digital elevation model scaled from [0, 7000m] to [-1, +1], and (2) a forest/non-forest classification
740 map with 3 classes normalized to [-1, +1]. Both products are duplicated across all 84 time steps (7
741 years \times 12 months) as they represent static features.
742743 **GEDI LiDAR Ground Truth.** We use GEDI L2A V2 products as ground truth labels, applying
744 quality filters to ensure data reliability: relative height at 98th percentile (rh98) between 0 m–150 m,
745 only high-power beams, number of detected modes ≥ 1 , quality flag = 1, degrade flag = 0, and
746 sensitivity ≥ 0.95 . These measurements provide sparse tree height estimates with approximately
747 25 m diameter footprints. [Labels are rasterized to the Sentinel-2 10 m bands using the provided](#)
748 [geolocation of the highest return \(given by lon_highestreturn and lat_highestreturn\).](#) In the very rare
749 occurrence of multiple GEDI labels having the same pixel and year associated, the
750 maximum of them is taken. Although the GEDI diameter is often referred to as 25 m, we just use the
751 center pixel, as the returned energy decreases rapidly when distancing from the center (see Figure 7).
752753 To ensure training data quality and focus on forested areas, we apply additional spatial filtering using
754 Tandem-X data. We calculate terrain slope within a 70 m radius around each GEDI measurement
755 and exclude locations with slopes exceeding 20° to avoid bare mountain areas. Additionally, we
756 use the Tandem-X Global Urban Footprint to remove measurements where human footprint exceeds
757 10%, ensuring our model trains on natural forest environments rather than urban areas.
758759 **A.2.2 TRAIN/TEST-SPLIT**
760761 Our testing dataset is created by randomly picking one area (960 m \times 960 m) inside each Sentinel-2
762 tile. To limit the effect of spatial autocorrelation, we enforce a minimum distance between training
763

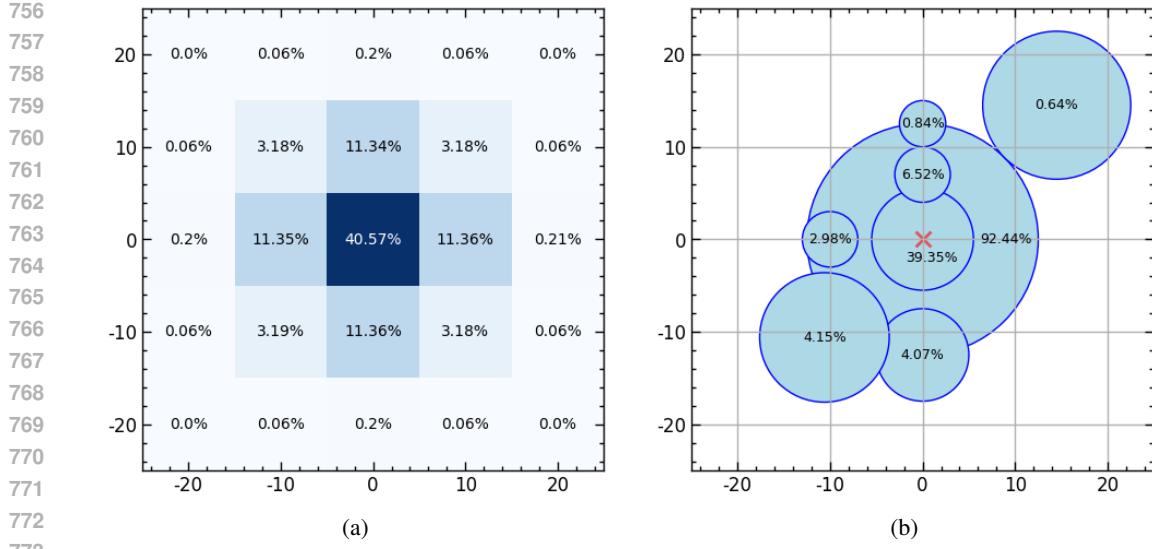


Figure 7: GEDI shot photon distribution. (a) The photon density of a single GEDI shot follows a normal distribution across both spatial dimensions. A Sentinel-2 pixel located directly at the center of the footprint receives 40.57% of the emitted laser energy. (b) Percentage of emitted photons received by sample trees at different positions. A tree with a 5 m radius centered directly under the GEDI footprint receives approximately 40% of the photons, while a tree of 7 m radius offset by 15 m from the center receives only 4.15%. Note that these values represent emitted photon distribution, not the reflected energy measured by the sensor. Actual measurements depend on material reflectance properties, ground return proportion, and the `rh98` metric extraction, requiring substantially more than 2% photon coverage for counting a tree as the largest tree in a GEDI measurement.

Table 2: Data sources used in ECHOSAT with their specifications and preprocessing parameters.

Source	Origin	Res.	CRS	Resampling	Bands/Channels	Normalization
Sentinel-1	Google Earth Engine	10m	UTM	NN	VH (Asc/Des)	[-50, 1] in dB
Sentinel-2	AWS	10m	UTM	N/A	All w/o B10	[0, 1000]: 0
ALOS Palsar-2	JAXA FTP	25m	EPSG:4326	Bilinear	HH/HV	[0, 2000]: 1–4
TandemX EDEM	DLR Geoservice	30m	EPSG:4326	Bilinear	—	[0, 6000]: 6–9
TandemX FNF	DLR Geoservice	50m	EPSG:4326	NN	—	[0, 4000]: 5/10/11
GEDI L2A	NASA Earthdata	~25m	EPSG:4326	N/A	rh98	—

and testing patches of at least 360 m. Figure 8 shows an analysis of spatial autocorrelation for our dataset, where the correlation is given by the Pearson product-moment correlation coefficient. The correlation starts at ≈ 0.74 and reaches its sill at a lag between 300 m and 400 m at 0.55.

A.2.3 MODEL ARCHITECTURE

Here, we define the model architecture and design decisions in more detail.

Patch Embed. We implement the Patch Embed via a Conv3D layer, with kernel size and stride set to $(1, 1, 1)$, which is equivalent to applying a linear layer channel-wise for every pixel and every timestep. Embedding patches of size 4×4 pixels, as most other contemporary approaches do it, would lead to the model producing blurry forest borders and overlooking individual or extraordinarily tall trees.

Temporal Downsample (TD) layer. The TD layer takes as input a tensor of shape $T_{\text{in}} \times H_{\text{in}} \times W_{\text{in}} \times E_{\text{in}}$ and outputs a tensor of shape $\text{reduce_time}[l_{\text{enc}}] \times H_{\text{in}}/2 \times W_{\text{in}}/2 \times 2E_{\text{in}}$. In our

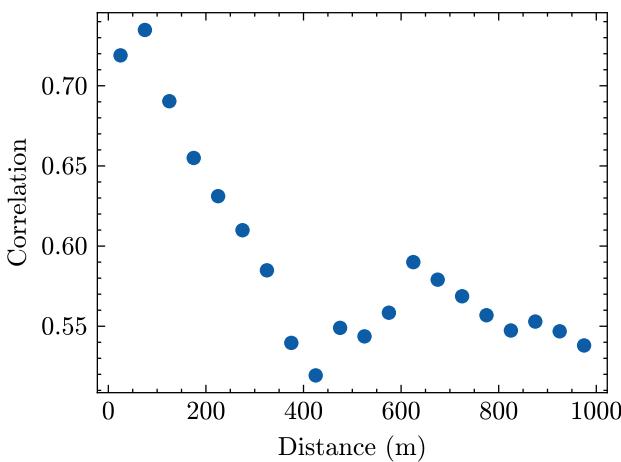


Figure 8: **Analysis of spatial autocorrelation between GEDI labels in our dataset.** Correlation is given by the Pearson product-moment correlation coefficient in bins of 50 m. The correlation starts to level off at around 300 m at 400 m.

model, we set `reduce_time` = [28, 14, 7], so the time dimension is reduced from 84 to 28 by a factor of three in Encoder layer 1, and then twice by a factor of two. The temporal reduction is implemented via a linear layer (without a bias) applied individually for every year and pixel by concatenating all embeddings of a pixel of a given year, then linearly projecting it down to the target temporal resolution. Afterwards, the spatial resolution is halved by concatenating the embeddings of four spatially adjacent pixels, applying Layer Normalization (Ba et al., 2016) and then applying another linear projection. The layer’s output is the input for the following Encoder layer, and for the TSC layer of the corresponding Decoder layer via a skip connection.

Temporal Skip Connection (TSC) layer. The TSC layer is the Decoder-counterpart of the TD layer. Note how the time dimension changes throughout the model: it is iteratively reduced from 84 to 7 in the Encoder, but stays 7 throughout the whole Decoder, as we need a single prediction map per year. This prohibits the simple addition of Encoder and Decoder inputs in the TSC layer. After trying out multiple designs, we settled on a Transformer layer, which we will now explain in detail for the skip connection between Encoder layer 1 and Decoder layer 4. The input coming from Encoder layer 1 has shape $84 \times H \times W \times E$ and the output of Decoder layer 4 has shape $7 \times H \times W \times E$. Now, we reshape and concatenate these inputs into a tensor of shape $7HW \times \frac{84+7}{7} \times E$. For every pixel and year (= voxel), we have 13 features, one from the decoder, the rest from the encoder. The decoder feature of a pixel can thus attend to its encoder features of the same year, before being passed on. After the attention we only keep the decoder token and ignore the others.

3D Window Multi-Head Self Attention (3D W-MSA). In the 3D window multi-head self attention, each token can attend to the other tokens within the same window, which spans two tokens along the temporal dimension and six along both spatial dimensions. In typical Video Swin Transformer fashion, every other attention block is shifted in time and space dimension. Thus, every token can attend to the 71 other tokens in the same window, 36 of which are from the previous or following timestep. Using an efficient attention mechanism is necessary due to the otherwise quadratic complexity in the number of pixels HW in an image. Windowed attention is a strong contender, inducing a locality bias while sacrificing the global receptive field in return. In subsequent Encoder layers, the receptive field of the windowed attention is progressively doubled, due to the downsampling operations.

Conv Heads. The reference head consists of a single 3D convolution that projects linearly from the embedding dimension to a scalar per voxel. The prediction head starts with two 3D convolutions with kernel size 3 in temporal and spatial dimension and keeping the embedding dimension unchanged, followed by Group Normalization (Wu & He, 2018) and ReLU activation. Therefore, neighboring pixels and consecutive years are able to interact with each other. The final step is a single 3D convolution as in the reference head. The prediction head is designed to allow local spatial and temporal interaction, in order to facilitate the precise detection of forest borders or disturbance

864
 865
 866
 867
 868
 869
 Table 3: **Ablation:** Comparison of our approach with (GrowthLoss and a simple linear regression)
 870 and without fine-tuning for labels from 2020 and above 5 m regarding MAE (m), MSE (m^2), RMSE
 871 (m), MAPE (%), R^2 and R^2_{all} (on all labels, including labels above 5 m). IQR is given in square
 872 brackets. The pseudo-label fine-tuning with our proposed Growth-Loss (see Section 3.3) does not
 873 affect the accuracy regarding the reference labels

Method	MAE ↓	MSE ↓	RMSE ↓	MAPE ↓	$R^2 \uparrow$	$R^2_{all} \uparrow$
Ours (w/ GrowthLoss)	5.85 [4.90]	118.07 [36.16]	10.87 [4.90]	30.20 [33.32]	0.59	0.77
Ours (w/ Linear)	5.87 [4.89]	118.51 [36.14]	10.89 [4.89]	30.34 [33.36]	0.59	0.77
Ours (w/o fine-tuning)	5.84 [4.89]	119.36 [35.55]	10.93 [4.89]	29.44 [32.13]	0.59	0.77

874
 875
 876 locations. Without this interaction, our models tend to have problems with border detection, pre-
 877 sumably due to geolocation uncertainty of GEDI measurements.

878
 879 **A.3 RESULTS**

880
 881 **A.3.1 ABLATION: FINE-TUNING**

882 We present an ablation study of our fine-tuning methodology, comparing the model without fine-
 883 tuning, fine-tuning with our GrowthLoss, and fine-tuning with a simple linear regression. Table 3
 884 shows that all three approaches yield similar results in terms of quantitative metrics, which is ex-
 885 pected since fine-tuning only uses the pseudo-labels produced by the pretrained backbone. The
 886 impact of fine-tuning becomes evident when examining the temporal evolution of pixel predictions
 887 (Figure 9). Without fine-tuning, the model can capture both tree growth and cutting events, but ex-
 888 hibits unwanted height fluctuations. Linear regression fine-tuning smooths tree growth predictions
 889 but fails to properly capture disturbances. Fine-tuning with our GrowthLoss, in contrast, reduces un-
 890 certainty in growth pixels, detects disturbances more accurately, and minimizes height fluctuations
 891 in disturbance border areas.

892
 893 **A.3.2 YEAR-WISE EVALUATION**

894 Table 4 presents MAE, MSE, RMSE, MAPE, and two R^2 metrics for our ECHOSAT maps for each
 895 year individually. Errors show a gradual decrease over time, which may suggest that recent years are
 896 easier to predict, but could also reflect improvements in GEDI label processing by NASA. A similar
 897 pattern is observed when examining errors across different height bins for each year (Figure 10).

898
 899 **Table 4: Year-wise comparison on error metrics regarding MAE (m), MSE (m^2), RMSE (m), MAPE
 900 (%)**, R^2 and R^2_{all} (on all labels, including labels below 5 m). IQR is given in square brackets.

Year	MAE ↓	MSE ↓	RMSE ↓	MAPE ↓	$R^2 \uparrow$	$R^2_{all} \uparrow$
2019	6.09 [5.25]	123.44 [40.48]	6.09 [5.25]	0.30 [0.34]	0.59	0.77
2020	5.85 [4.90]	118.07 [36.16]	5.85 [4.90]	0.30 [0.33]	0.59	0.77
2021	5.41 [4.71]	96.03 [33.49]	5.41 [4.71]	0.30 [0.33]	0.63	0.79
2022	5.24 [4.75]	85.37 [34.34]	5.24 [4.75]	0.29 [0.31]	0.66	0.82
2023	5.56 [4.94]	102.86 [35.77]	5.56 [4.94]	0.29 [0.31]	0.62	0.79
2024	4.77 [4.26]	72.01 [27.78]	4.77 [4.26]	0.28 [0.28]	0.68	0.83

901
 902
 903
 904
 905
 906
 907
 908
 909
 910 **A.3.3 SPATIAL DISTRIBUTION OF ERRORS**

911
 912 Figure 11 (a) shows a global map where the average error in each region is indicated by color
 913 (darker colors correspond to higher errors). Because height and error are closely correlated (as
 914 seen in Figure 5 and Table 5 for labels < 5 m), this map primarily reflects the average tree height
 915 per region. Figures 11 (b–g) show the same map broken down into 5 m height bins. While errors
 916 generally increase with height, the relatively small errors for large trees in the Amazonas rainforest
 917 and Congo Basin may indicate lower structural heterogeneity in these forests, making them easier
 918 to predict.

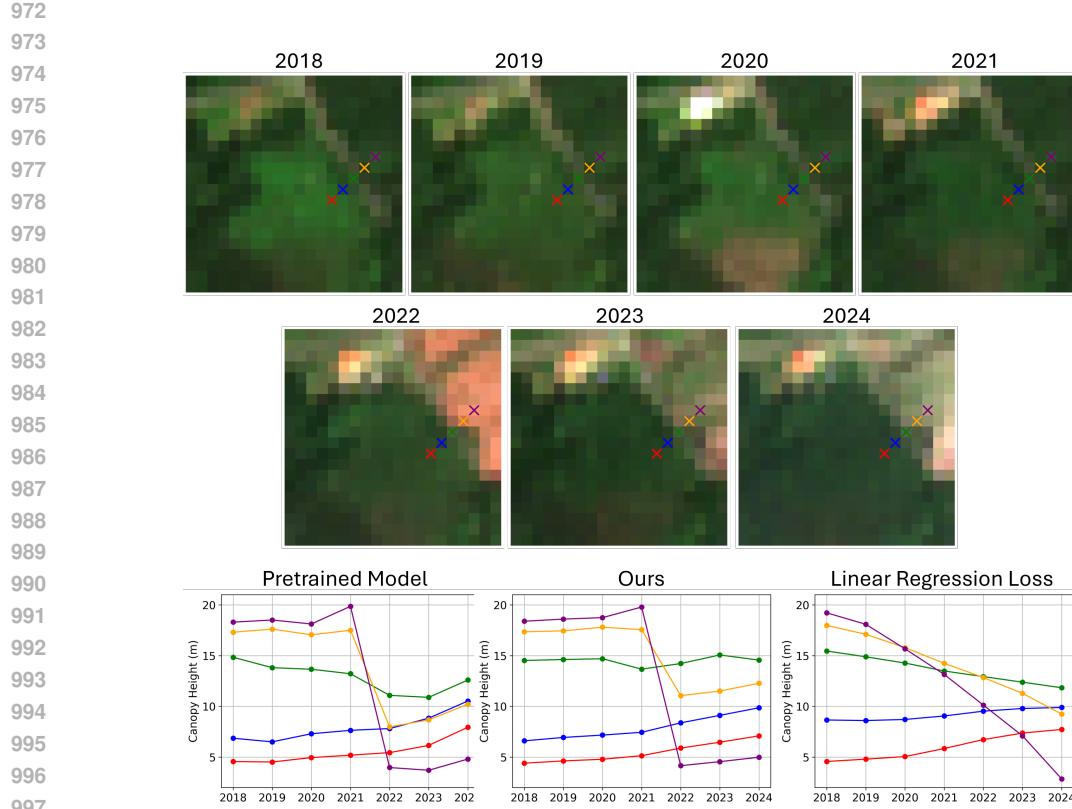
918
 919 Table 5: Comparison of global-scale methods for 2020 only for labels below 5 m regarding MAE
 920 (m), MSE (m²), RMSE (m), MAPE (%), R^2 and R^2_{all} (on all labels, including labels above 5 m).
 921 Please note that while GEDI measures ground elevation between 2 m and 3 m, Tolan et al. (2024);
 922 Lang et al. (2023); Potapov et al. (2021) either use other labels or manually set their ground predic-
 923 tions to 0 m, thereby making a comparison here ineffective.

Method	MAE ↓	MSE ↓	RMSE ↓	MAPE ↓	$R^2 \uparrow$	$R^2_{\text{all}} \uparrow$
Potapov et al. (2021)	2.84 [0.56]	9.08 [3.08]	3.01 [0.56]	98.20 [0.00]	0.26	0.70
Lang et al. (2023)	3.04 [0.71]	13.30 [3.95]	3.65 [0.71]	104.08 [0.00]	0.28	0.71
Pauls et al. (2024)	1.08 [0.96]	2.99 [1.73]	1.73 [0.96]	37.04 [31.31]	0.49	0.73
Tolan et al. (2024)	2.87 [0.60]	8.93 [3.32]	2.99 [0.60]	99.04 [0.00]	0.16	0.64
Ours	0.51 [0.42]	1.82 [0.24]	1.35 [0.42]	15.99 [13.12]	0.39	0.77

A.3.4 LiDAR COMPARISON

Validating large-scale tree-height products remains challenging. GEDI provides global coverage, though with some noise and uncertainty, while airborne LiDAR (ALS) offers higher accuracy but is spatially sparse, biased toward well-surveyed regions, and rarely has temporal revisits suitable for year-to-year evaluation. For these reasons, GEDI remains the most practical benchmark for a global-scale study.

To provide additional context, we include an evaluation using ALS-derived labels in the Landes forest (France) from the LiDAR HD campaign (Figure 12). These results confirm local accuracy but are specific to this region and do not generalize globally. While ALS comparisons are valuable, systematic multi-region ALS validation is beyond the scope of this work.



998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 9: Sentinel-2 time series and temporal tree height prediction for five neighbouring pixels around a disturbance for the pretrained model (Left), our model (Middle) and model fine-tuned with a single linear regression model (Right). The simple linear regression model is fine-tuned on pseudo-labels produced by a linear interpolation of the pretrained model’s predictions.

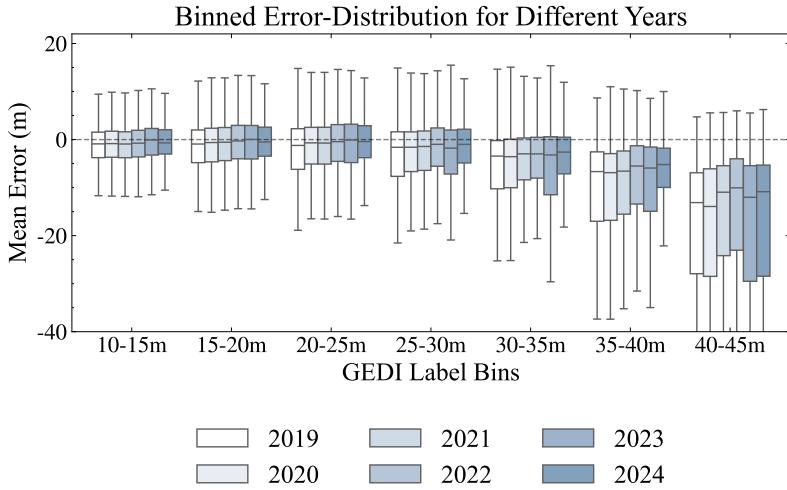


Figure 10: Error distribution analysis across height classes (5 m bins) for ECHOSAT predictions and different years. Boxplots show mean absolute error for each height class. The errors for smaller trees are very similar, with higher trees showing earlier years as being slightly more difficult than recent years.

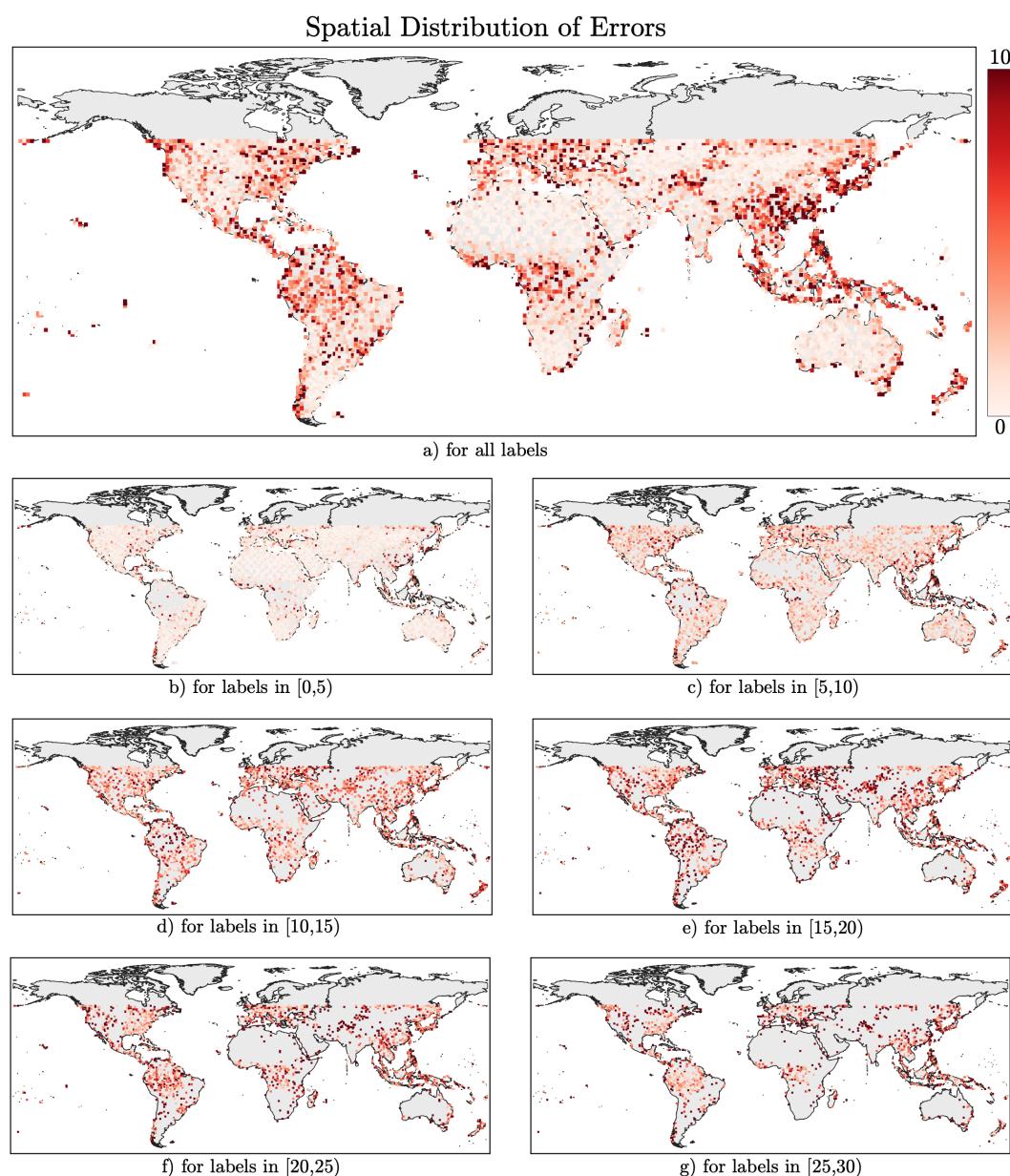
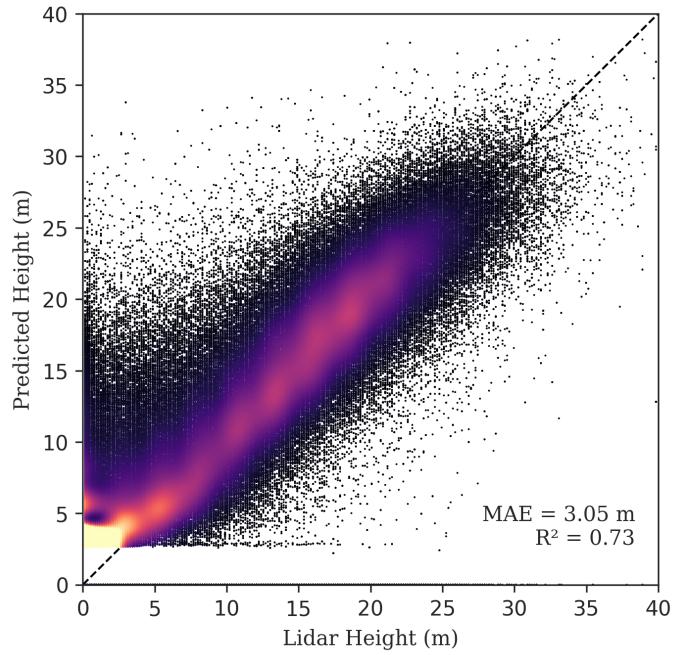


Figure 11: Spatial distribution of errors for all labels (a) and different height bins (b-g). a) strongly correlates with known areas of taller trees (i.e. higher errors, see Figure 5), small trees (b-c) generally have low errors globally, whereas errors systematically growth with tree height (d-g). Interestingly, (1) the east coast of North America has lower errors compared to other areas and (2) the Amazonas rainforest and Congo Basin, known for tall trees, have smaller errors (g) compared to other regions.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114



1115 Figure 12: Density scatterplot between ALS tree height labels and ECHOSAT predictions in the
 1116 Le Landes forest plantation area in France. LiDAR campaigns are from the LiDAR HD of the
 1117 French Geoservices and have been reprojected and downsampled to 10m and EPSG:32630 using
 1118 max pooling. The prediction is taken from the corresponding year of the ALS campaign. As our
 1119 model is only trained with GEDI labels and GEDI labels cannot differentiate between small trees,
 1120 bushes and ground elevation, it sets the minimum height to ≈ 3 m. Bright colors indicate higher
 1121 density.

1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 A.4 MODEL HYPERPARAMETERS
11351136 Table 6: Hyperparameters used for model training. Some parameters differ between pretraining and
1137 finetuning, while most remain unchanged.
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 Parameter	1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 Symbol	1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 Value	
		1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 Pretraining	1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 Finetuning
Number of years	Y	7	
Number of timesteps	T	84 (= $Y \cdot Months$)	
Number of input channels	C	18	
Embedding dimension	E	72	
Height / Width (in pixels)	H / W	96	
Encoder depths	depth[l_{enc}]	[6, 4, 4, 6]	
Decoder depths	depth[l_{dec}]	[4, 6, 8, 16]	
Attention heads		[4, 8, 12, 24]	
Temporal window size		2	
Spatial window size		6	
Embedding patch size	$P_H \times P_W \times P_T$	$1 \times 1 \times 1$	
Optimizer		AdamW	
Maximum learning rate		1×10^{-4}	3×10^{-3}
Learning rate linear warmup		30%	
Learning rate schedule		Cosine Annealing	
Gradient clipping		1	
Number of iterations		400k	47k
Loss		$\mathcal{L}_{\text{huber}}(\cdot)$	$\mathcal{L}_{\text{growth}}(\cdot)$
Batch size		16	8