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ABSTRACT

Forest monitoring is critical for climate change mitigation. However, existing
global tree height maps provide only static snapshots and do not capture temporal
forest dynamics, which are essential for accurate carbon accounting. We introduce
ECHOSAT, a global and temporally consistent tree height map at 10m resolution
spanning multiple years. To this end, we resort to multi-sensor satellite data to
train a specialized vision transformer model, which performs pixel-level temporal
regression. A self-supervised growth loss regularizes the predictions to follow
growth curves that are in line with natural tree development, including gradual
height increases over time, but also abrupt declines due to forest loss events such
as fires. Our experimental evaluation shows that our model improves state-of-the-
art accuracies in the context of single-year predictions. We also provide the first
global-scale height map that accurately quantifies tree growth and disturbances
over time. We expect ECHOSAT to advance global efforts in carbon monitoring
and disturbance assessment. The produced height maps will be made accessible
upon acceptance.

1 INTRODUCTION

Forests play a crucial role in the mitigation of climate change, absorbing 3.5Pg of carbon per year,
which represents almost half of anthropogenic fossil fuel emissions (Pan et al., 2024). As global car-
bon emissions continue to increase, precise monitoring of forest carbon dynamics using up-to-date
information on forest health and carbon balance has become an essential for effective climate policy
and forest management decisions. Recent advances in satellite remote sensing and machine learning
have enabled automated forest carbon monitoring on country-to-global scales, using tree height as
a key proxy for estimating the so-called above-ground biomass (AGB) and, therefore, carbon stor-
age (Schwartz et al., 2023). Most of these height maps provide a static representation of forests at
a specific point in time and cannot be used to estimate year-to-year carbon absorption (Tolan et al.,
2024; Pauls et al., 2024; Lang et al., 2023; Potapov et al., 2021).

While such static snapshots of forests worldwide already depict a viable resource, they do not cap-
ture temporal dynamics such as tree growth or forest loss. Some studies provide such a temporal
monitoring of forests. However, they are often limited to large scale disturbances such as forest
losses due to big fires (Reiche et al., 2021; Hansen et al., 2013b). Small-scale height decreases
from degradation, individual tree mortality or forest thinning, however, are significantly smaller
and, hence, harder to detect. Additionally, very few studies have succeeded in retrieving realistic
year-to-year forest growth pattern at a high resolution (Turubanova et al., 2023; Schwartz et al.,
2025), and rely on single-year models independently applied to multiple years along with extensive
post-processing to achieve temporal consistency. None of the aforementioned approaches is based
on models that inherently learn forest temporal dynamics, thus, when no post-processing is applied,
this leads to unrealistic fluctuations at the pixel-level and poor temporal coherence in predictions.

In this work, we provide the first global tree height mapping approach at high resolution (10m)
across multiple years. Our method combines a transformer-based temporal regression model with
an adapted loss that addresses sparse temporal supervision, where labels are limited both spatially
(not every pixel has ground truth) and temporally (each pixel often has only a single measurement),
while enforcing physically realistic growth patterns. By leveraging multi-sensor satellite data, we
produce a coherent global time series of tree height maps at unprecedented scale and resolution.
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Contributions. Our main contributions are threefold. First, we present ECHOSAT, the first high-
resolution (10m) spatio-temporal tree height map covering the entire globe across seven years
(2018–2024), which enables reliable monitoring of forest dynamics and disturbances at scale. Sec-
ond, to enforce physically realistic forest growth patterns, we introduce a novel growth loss frame-
work specifically designed for training temporal regression models with sparsely distributed and
temporally irregular ground truth labels. Third, we demonstrate that our model inherently learns
realistic temporal forest height dynamics without relying on post-processing, capturing both natu-
ral growth and abrupt disturbances. We further demonstrate that our model outperforms existing
approaches on single-year evaluations.

2 BACKGROUND

We construct a consistent global time series of forest heights from multiple satellite datasets. Remote
sensing has long been used to complement and upscale forest inventory measurements (Tomppo
et al., 2008), and more recently deep learning approaches have been introduced in this context. We
briefly review these methods and highlight the relevance and impact of our work in this context.

2.1 VISION ARCHITECTURES AND SELF-SUPERVISED LEARNING

Recent advances in remote sensing have been driven by foundation models adapted from com-
puter vision (Tseng et al., 2025; Fuller et al., 2023; Fayad et al., 2025; Astruc et al., 2025; Tseng
et al., 2023). These models predominantly employ isotropic architectures (e.g., standard Vision
Transformers) to leverage scalable self-supervised learning (SSL) objectives. The three dominant
paradigms are: (1) Masked Image Modeling (MIM), such as MAE (He et al., 2022), which learns
by reconstructing randomly masked patches; (2) Contrastive Learning, such as SimCLR(Chen et al.,
2020), which optimizes for semantic invariance between different views or crops of an image; or (3)
Joint-Embedding Prediction Architectures like I-JEPA (Assran et al., 2023) that predict the embed-
ding of one part of the image using another part of the same image.

However, these paradigms present structural incompatibilities with hierarchical architectures (Liu
et al., 2021; Cao et al., 2022), which are otherwise superior for dense prediction tasks. Specifically,
the unstructured masking strategies central to MAE and I-JEPA disrupt the rigid grid alignment
required by the shifted-window attention mechanisms in hierarchical transformers. Furthermore,
contrastive objectives often enforce global semantic uniformity, suppressing the high-frequency,
pixel-level spatial details required for fine-grained regression. Consequently, while Swin-based ar-
chitectures offer inductive biases well-suited for dense canopy height estimation, they have seen
limited adoption in large-scale remote sensing foundation models.

2.2 FOREST HEIGHT PREDICTION USING REMOTE SENSING DATA

Satellite remote sensing at high resolution employs mainly three types of sensors: optical, SAR
(Synthetic Aperture Radar) and LiDAR (Light Detection And Ranging). Optical sensors operate
passively, measuring sun’s reflected electromagnetic radiation across multiple spectral bands from
visible to near-infrared wavelengths. For instance Sentinel-2 delivers multi-spectral optical imagery
with up to 10m spatial resolution and approximately 6-day revisit time depending on latitude, while
Landsat provides historical multi-spectral data with 30m spatial resolution, enabling long-term tem-
poral analysis. In contrast, SAR sensors actively transmit microwave signals and measure the back-
scattered energy, enabling data acquisition regardless of illumination conditions and cloud cover.
LiDARs are light-emitting and receiving sensors that estimate distances by measuring the time it
takes for the light to return to the sensor after being reflected on an object. The Global Ecosystem
Dynamics Investigation (GEDI) mission, operated by the NASA and deployed on the International
Space Station (ISS), provides spaceborne LiDAR measurements of forest vertical structure within
25m diameter footprints end of 2018 (Dubayah et al., 2022). This data can be used to get (above-
ground) height measurements of the footprint. GPS and star tracker data are used to estimate the
position of ISS and deduce geolocation of a measurement.

Due to it’s correlation with forest biomass, forest height mapping has gained significant attention
in recent years, with numerous studies producing tree height maps at regional (Favrichon et al.,
2025), national (Su et al., 2025; Schwartz et al., 2023), continental (Liu et al., 2023) and global
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Figure 1: Architecture of the Temporal-Swin-Unet. Skip connections are depicted as dashed arrows.
The shape of the tensor in between a layer is shown in magenta: C (channels), T (timesteps), H
(height), W (width), Y (years), and E (embedding dimension). In addition to the Video Swin
Transformer Blocks (Liu et al., 2022), Encoder Layers have a Temporal Downsample (TD) layer at
the end, and Decoder Layers a Temporal Skip Connection (TSC) at the beginning.

scale. These maps typically combine remote sensing imagery with reference height measurements
from spaceborne LiDAR systems such as GEDI or ICESat, or from airborne laser scanning (ALS)
campaigns. The development of global tree height maps has progressed significantly in recent years.
Potapov et al. (2021) pioneered the first global tree height map using Landsat data at 30m resolution,
GEDI measurements, and a random forest model. Subsequent work by Lang et al. (2023) improved
spatial resolution to 10m using Sentinel-2 data and convolutional neural networks. More recently,
Pauls et al. (2024) developed a global map using a UNet architecture with a specialized loss function
designed to improve robustness to noise, while Tolan et al. (2024) achieved individual tree-level
detection using a DINOv2 model fine-tuned on 1m+ Maxar data with ALS and GEDI labels.

Single-snapshot estimates cannot capture the effects of management or climate change over time.
Temporal tree height mapping methods address this, with the simplest approach training single-year
models independently on each year of remote sensing data (Kacic et al., 2023). A more sophisti-
cated approach employs space-for-time substitution, where models trained on spatial variations are
applied to temporal sequences under the assumption that similar spatial patterns correspond to sim-
ilar temporal dynamics (Schwartz et al., 2025). A third approach uses classical machine learning
methods with extensive post-processing to smooth temporal inconsistencies and reduce prediction
uncertainty (Turubanova et al., 2023). These approaches easily capture abrupt large-scale height
changes due to forest clearcuts or large disturbance events (fires, storms) but often overlook small
disturbances at the tree level. Above all, they cannot produce consistent height time-series at the
pixel level which preclude any detailed carbon dynamics analysis.

2.3 RELEVANCE AND IMPACT

Accurate mapping of tree height is a prerequisite for assessing biomass carbon storage and wood re-
sources over the world forests. For monitoring forest changes under human and climate pressure, we
need dynamic maps instead of static products. Furthermore, as most height loss instances come from
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small scale events such as mortality occurring in clusters of trees, natural forest disturbances, and
human activities including timber harvest, degradation and deforestation, a high spatial resolution is
needed to capture the fine scale patterns of height decreases.

The new global annual forest height maps at 10m resolution developed in this study with a deep
learning model that can learn to reconstruct height changes not only from spatial gradients but also
from temporal images represent a significant step forward that goes beyond previous global static
maps and extends temporal change maps that were limited to few regions and used coarser resolution
models. Our map was evaluated against height labels not used for training, but coming from the same
space-borne LiDAR. Over pixels not affected by losses where forests are growing or regrowing after
previous loss events, we also showed regular year on year increment of height that are consistent
with ecological knowledge indicating that younger and shorter trees grow faster than taller ones.

The main remaining challenge is the verification of our predicted height changes against indepen-
dent observations such as airborne LiDAR repeated campaigns, dense ground-based inventories
census, which include revisits of hundreds of forest plots over time, and interpretation of high res-
olution imagery for height loss events. Current approaches to temporal tree height mapping rely on
post-processing techniques to achieve temporal consistency, as existing models are not inherently
designed to learn realistic temporal dynamics. This represents a significant limitation, as models
that could naturally incorporate temporal constraints and learn realistic growth patterns would pro-
vide more accurate and physically meaningful predictions without requiring extensive smoothing or
correction procedures.

3 APPROACH

With the research gap in mind, we develop a new methodology to estimate tree height with coherent
temporal predictions at global scale by training the model inherently to produce realistic temporal
changes. The approach uses a model with two outputs heads and a two-step process: the first
(reference) head is pre-trained using Huber loss and the second (prediction) head is finetuned on
pseudo-labels created from the frozen first head. Further details on data processing, quality filtering,
normalization, and the model architecture are provided in Appendix A.2.

3.1 DATA

We integrate multi-temporal satellite data spanning 2018–2024 to enable global-scale temporal tree
height mapping, with Sentinel-2 providing the primary image source at 10m resolution.

Multi-sensor Satellite Data. We combine optical (Sentinel-2) and radar backscatter (Sentinel-
1, ALOS PALSAR-2) data with auxiliary products (TanDEM-X DEM and forest classification).
Sentinel-2 provides monthly images at 10m resolution across 12 spectral bands, while radar data
offers quarterly (Sentinel-1) and yearly (ALOS PALSAR-2) composites. GEDI LiDAR measure-
ments serve as ground truth labels for 2019–2024 with approximately 25m diameter footprints.

Data Processing Pipeline. We create a unified input tensor of shape 18 × 84 × 96 × 96 (channels
× timesteps × height × width) by temporally aligning different input data and spatially resampling
all data to 10m resolution. Quality filtering on GEDI ground truth ensures reliable measurements.

3.2 MODEL ARCHITECTURE

Our model is based on the Swin Transformer (Liu et al., 2021) and leverages two key extensions: the
Video Swin Transformer (Liu et al., 2022), designed for video input processing, and the Swin-Unet
(Cao et al., 2022), tailored for semantic segmentation tasks.

Temporal-Swin-Unet. We combine the extensions from Cao et al. (2022) and Liu et al. (2022)
with some small, but crucial, changes to perform pixel-wise regression on a time-series of images of
shape C×T×H×W . We call the resulting architecture Temporal-Swin-Unet, depicted in Figure 1.
Different from most contemporary approaches, we adopt a patch size of 1 × 1 pixels, following
Nguyen et al. (2025). The Patch Embed layer linearly projects each voxel1 into the embedding

1We define a voxel as a value in the 3D grid T ×H ×W , i.e. a pixel at a given timestep.
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dimension E. Operating on the original resolution is crucial for our application, where every pixel
corresponds to 10× 10 meters. The model consists of four Encoder and Decoder layers each, which
are connected via skip connections. Each Encoder and Decoder layer consists of multiple Video
Swin Transformer Blocks (Liu et al., 2022). Except at the Unet’s lowest level, all Encoder layers
end with a Temporal Downsample (TD) layer and all Decoder layers begin with a Temporal Skip
Connection (TSC).

TD and TSC layer. The TD layer reduces the temporal and spatial dimension by applying a year-
wise linear projection, concatenating the embeddings of four adjacent pixels, and performing another
linear projection to double the embedding size. The TSC layer enriches the Decoder-features token-
wise per year with the corresponding Encoder-features of the same year via a Transformer layer. At
the end of the Decoder layer, we perform spatial upsampling to increase the spatial resolution by a
factor of two.

Conv Heads. On top of the final Decoder layer we use two heads: the reference head, which is used
for pretraining and projects the embeddings voxel-wise to scalar values; the prediction head is added
later for fine-tuning and consists of three Conv3D layers with normalization and activation layers
in between. Our model thus outputs a tensor of shape 2 × Y × H × W , being two canopy height
predictions per year and pixel.

3.3 GROWTH LOSS

Motivation and Notation. We propose a self-supervised approach to achieve consistent growth
curves, which are monotonically increasing, but allow for sharp cut-offs in disturbance situations.
Let Yref ∈ RY×H×W and Ypred ∈ RY×H×W be the outputs of the reference head and the prediction
head. Furthermore, let zref := Yref

:,h,w ∈ RY and zpred := Yref
:,h,w ∈ RY be the predicted time series

at the pixel (h,w) ∈ {1, . . . ,H}×{1, . . . ,W}. In short, the loss works as follows: it fits a regression
on zref and uses the fitted values as pseudo-labels for zpred. The regression function is either
linear or a combination of two linear functions (pre- and post-disturbance) in case a disturbance is
detected, where all slopes are forced to lie in a reasonable interval for tree growth, e.g. in [smin =
0m/year, smax = 3m/year].

Disturbance Indicator. A disturbance is considered to occur in zref ∈ RY when a) tree height
decreased by more than 50% and more than 4m and b) tree height decreased to less than 10m
within two years.2 Thus, we define the set of pre-disturbance years Ydstb(z

ref) to be

Ydstb(z
ref) = {y ∈ {1, . . . , Y − 1} | zref

y+1 ≤ min(0.5 · zref
y , zref

y − 4),min(zref
y+1, z

ref
y+2) ≤ 10}.

The local disturbance indicator, defined as the final year preceding a disturbance, is defined by

Idstb,loc(zref) :=

{
Y if Ydstb(z

ref) = ∅
min(Ydstb(z

ref)) else
∈ {1, . . . , Y }.3

Combining the pixel-wise local disturbance indicator, we can build an image-wise local disturbance
indicator Idstb,loc(Yref) ∈ {1, . . . , Y }H×W . The disturbance indicator is finally defined as

Idstb(Yref) = MinPool3×3(Idstb,loc(Yref)) ∈ {1, . . . , Y }H×W . (1)

Constrained Linear Regression. For some N ∈ N and vector z ∈ RN , we define the con-
strained linear regression vector ẑ ∈ RN with respect to a minimal and maximal slope smin < smax

as follows. Let s̃ ∈ R be the slope of the simple linear regression model for the dataset
{(1, z1), (2, z2), . . . , (N, zN )}. Then the slope s, the intercept b and ẑ are defined by

s := min(max(s̃, smin), smax) ∈ [smin, smax]

b := z̄ − s · N + 1

2
∈ R with z̄ :=

1

N

N∑
n=1

zn

ẑ := s · [1, 2 , . . . , N ]T + b ∈ RN .

2As no global temporal tree height dataset is available, validation of these set values is difficult, hence we
solely rely on domain expert knowledge.

3Please note that for the majority of tree height prediction time series, there is at most one disturbance year
and the minimum is just taken to take care of the other rare cases.
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Table 1: Comparison of global-scale methods for 2020 regarding MAE (m), MSE (m2), RMSE (m),
MAPE (%), R2 and R2

all (on all labels, including labels below 5m). IQR is given in square brackets.

Method MAE ↓ MSE ↓ RMSE ↓ MAPE ↓ R2 ↑ R2
all ↑

Potapov et al. (2021) 9.11 [7.73] 185.52 [107.99] 13.62 [7.73] 54.90 [78.99] 0.50 0.70
Lang et al. (2023) 7.97 [6.67] 143.78 [81.04] 11.99 [6.67] 53.33 [76.84] 0.52 0.71
Pauls et al. (2024) 6.85 [6.41] 138.19 [60.75] 11.76 [6.41] 34.20 [33.16] 0.51 0.73
Tolan et al. (2024) 11.89 [9.09] 260.28 [182.25] 16.13 [9.09] 68.78 [57.80] 0.45 0.64
Ours 5.85 [4.90] 118.07 [36.16] 10.87 [4.90] 30.20 [33.32] 0.59 0.77

Growth loss. Pseudo-labels are created by performing piecewise constrained linear regression on
the reference time series. Let y := Idstb(Yref)h,w ∈ {1, 2, . . . , Y } be the detected pre-disturbance
year of the reference output and split zref into pre- and post-disturbance vectors, that is

zref
pre := [zref

1 , . . . ,zref
y ]T ∈ Ry and zref

post := [zref
y+1, . . . ,z

ref
Y ]T ∈ RY−y.

Then the pseudo-labels are defined by concatenating the constrained linear regression vectors
ˆzref
pre,

ˆzref
post for pre- and post-disturbance vectors, thus

ˆzref := [ ˆzref
pre,

ˆzref
post]

T ∈ RY .

Finally, the growth loss measures the distance between pseudo-labels and predictions, i.e.

Lgrowth(z
ref , zpred) :=

1

Y
|| ˆzref − zpred||. (2)

3.4 MODEL TRAINING

Training a spatio-temporal model at global scale requires careful design of the dataset construc-
tion and optimization strategy. The large size and geographic diversity of the input data demand a
sampling strategy that balances coverage of relevant forested areas with computational feasibility,
both for training and global-scale inference. Further, the sparse and (temporally and spatially) noisy
nature of GEDI supervision necessitates specialized training objectives and stable optimization.

Dataset. Building on the multi-sensor inputs described in Section 3.1, we assembled a large-scale
training dataset by sampling spatio-temporal patches centered on GEDI footprints. From each of the
13.000 Sentinel-2 tiles over land with GEDI coverage, we generated up to 230 patches depending on
the availability of valid GEDI labels. In non-forested regions with limited relevance (e.g., Sahara)
we restricted the number of patches to a maximum of three to reduce computational overhead. The
resulting dataset contains approximately 3 million multi-sensor samples, totaling approx. 50TB of
input data. For model testing, we selected one hold-out sample per Sentinel-2 tile, ensuring broad
spatio-temporal coverage across continents and biomes.

Training Procedure. We trained our model on 8 NVIDIA H200 GPUs for about one week with the
hyperparameters detailed in Table 6 in the Appendix A.4. We first pretrained the model using the
Huber loss on the reference head for 400k iterations with a batch size of 16. Subsequent finetuning
for 47k iterations and a batch size of 8 was performed by training the prediction head with the growth
loss detailed in Section 3.3, while freezing the rest of the model parameters.

4 RESULTS

We evaluate ECHOSAT through a comprehensive three-part assessment. Our evaluation uses GEDI
labels filtered according to the quality criteria described in Appendix A.2.1, ensuring a reliable
ground truth. We first assess prediction accuracy against GEDI labels, then analyze the temporal
dynamics and growth patterns captured by our model, and finally compare our 2020 predictions
against existing single-year baselines. When not specified otherwise, reported metrics exclude labels
below 5m following Hansen et al. (2013a), which defines trees as vegetation exceeding 5m height.
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Figure 2: Left. Scatter plot showing the predicted height in 2018 against 2024. Disturbed pixels are
identified by a decrease of more than 5m between 2018 and 2024, marked red and excluded from
the median aggregation. Right. Median height difference from 2018 to each year, binned in 1m
height classes. The right y-axis shows the height class distribution and area for these classes.

Figure 3: Examples of predicted tree height dynamics for two contrasting regions. Top: Le Landes
(France) showing disturbance and regrowth patterns. Bottom: Amazonas (Brazil) with largely stable
forest structure. Each block shows optical imagery (top row), predicted tree height (second row),
and corresponding change maps from 2018 to 2024 (right column).

4.1 CANOPY HEIGHT ACCURACY

For 2019-2022, MAE values range from 5.36m to 6.27m, indicating similar prediction accuracy
across years. However, 2023-2024 show notable variations: MAE increases to 5.79m in 2023, then
decreases significantly to 4.89m in 2024. This pattern correlates with GEDI’s operational status, as
the instrument was inoperational from March 17, 2023, through April 22, 2024, resulting in different
label distributions and availability patterns. Details in Table 4 in Appendix A.3

7
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Figure 4: Left: Scattterplots showing the predicted height for 2020 vs GEDI labels with the correla-
tion coefficient (R2) and the correlation coefficient for labels exceeding 5m (R2

5) indicated for each
plot. Right: Histogram of the (predicted) values.

The substantial gap between MAE (4.89m−6.27m) and RMSE (8.59m−11.21m) indicates the
presence of large prediction errors, suggesting that while most predictions are reasonably accurate,
occasional severe errors occur. This error distribution likely stems from remaining noise in GEDI
labels after filtering, particularly cases where LiDAR waveforms fail to penetrate dense canopies,
resulting in ground-level measurements (0m) for trees that may actually exceed 30m in height.

4.2 CANOPY HEIGHT GROWTH/DECLINE

Due to the sparse temporal and spatial distribution of GEDI labels, a temporal validation with GEDI
is not possible. Instead, we focus on analyzing the temporal dynamics captured by our model to
assess whether the predictions exhibit realistic forest growth patterns.

The left part of Figure 2 presents a scatterplot of predicted heights in 2018 versus 2024, with median
values plotted for each 1m height bin. Pixels are marked disturbed when the height decreaes by more
than 5m over the time span. The right part of Figure 2 shows median height differences and lower
and upper quartile for each 1m height class from 2018 to each subsequent year, demonstrating
year-to-year growth variations. The analysis reveals consistent growth across all height classes,
with taller trees exhibiting slower growth rates, consistent with established forest growth patterns.
Figure 3 shows the predictions and change for two areas: Highly active forests in Le Landes (France)
and Amazonas rainforest (Brazil). In the Le Landes forest in France, which is well known for
its intensive wood production and therefore fast-growing tree species, the predictions reveal many
disturbances — most likely caused by logging activities — and phases of regrowth. In contrast,
the predictions for the Amazonas region remain largely stable, showing very little variation across
the different years. Satellite images from 2018 to 2024 together with time-series of pixel-wise
predictions for five selected pixels around a disturbance in Le Landes are depicted in Figure 9 in
Appendix A.3. Please note that our model is able to predict consistent canopy height over time,
even for the first year 2018, where GEDI labels are not available.

4.3 COMPARISON AGAINST EXISTING MAPS

While no global-scale temporal tree height maps exist, four single-year approaches provide suitable
baselines for comparison: Tolan et al. (2024) (DINOv2-based, 1m resolution), Potapov et al. (2021)
(Random Forest, 30m Landsat), Lang et al. (2023) (CNN, 10m Sentinel-2), and Pauls et al. (2024)
(UNet, 10m Sentinel-2). We compare our 2020 predictions against these baselines using the same
MAE, MSE, RMSE, MAPE and two R2 metrics on our test samples. All baseline maps were
downloaded from Google Earth Engine, rescaled to 10m using bilinear interpolation, and warped
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Figure 5: Error distribution analysis across height classes (5m bins) for all baseline methods. Box-
plots show mean absolute error for each height class, revealing that tall tree prediction remains
challenging across all approaches, with errors increasing substantially for heights above 25m.

to the corresponding Sentinel-2 tile CRS. Table 1 reports the quantitative comparison, showing
that ECHOSAT consistently outperforms the other maps, while also reducing the variance in its
predictions.

Figure 6 shows a visual comparison of all maps in 3 distinct regions. Although the map by Tolan
et al. (2024) is resampled to 10m, it visually still has a higher resolution and can be used very well
for the detection of smaller tree patches. The map by Potapov et al. (2021) uses 30m Landsat data
as input and therefore the map fails to identify some trees, however the accuracy and tree height
labels is better. Lang et al. (2023), Pauls et al. (2024) and our model use Sentinel-2 as input and can
detect most smaller forest patches, but also have a higher accuracy on tree height labels. Pauls et al.
(2024) and our model show finer structure in the prediction.

The scatterplots and histograms in Figure 4 and 5 reveal that Tolan et al. (2024), Pauls et al. (2024)
and Potapov et al. (2021) saturate between 30m and 35m, while Lang et al. (2023) and our map
can predict beyond that. As already indicated by the correlation coefficient, also the body of our
scatterplot is narrower than the one by Lang et al. (2023). Although our predictions stop at roughly
45m, comparing them to the GEDI distribution reveals a closer match than for Lang et al. (2023).
Further figures are provided in Appendix A.3).

5 CONCLUSION

Our approach addresses the fundamental limitation of existing static forest height products through a
novel growth loss framework that inherently enforces physically realistic forest dynamics without re-
quiring post-processing. By leveraging multi-sensor satellite data and our Temporal-Swin-Unet, we
demonstrate how temporal forest monitoring can be achieved at unprecedented scale and resolution.
Our evaluation shows that different height classes of trees have varying growth rates, consistent with
existing literature. On a single-year evolution comparing our map to other existing ones we show
strong performance and improved accuracy in all evaluated metrics. This work provides essential
capabilities for climate change mitigation, carbon accounting, and forest disturbance assessment,
advancing our ability to monitor and understand global forest dynamics. The produced maps will be
made available upon acceptance.

9
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Figure 6: Qualitative comparison across three geographically diverse locations. The first column
shows Google Maps imagery for spatial context, while subsequent columns display predicted tree
heights (0m−30m range) for each method. This visual assessment reveals differences in spatial
detail, forest boundary detection, and height estimation accuracy across the various approaches.

5.1 LIMITATIONS

The proposed ECHOSAT maps have several limitations, which we sketch here:

Ground truth constraints. GEDI labels exhibit systematic noise in cloudy regions (e.g., tropical
rainforests) and for trees exceeding 50 m, where LiDAR signals fail to accurately reach the ground.
GEDI cannot reliably measure vegetation below 5 m, limiting predictions for shrubs and small
trees. The sparse spatial coverage ( 25 m footprints at irregular spacing) means most pixels lack
direct supervision, requiring substantial spatial generalization. As GEDI began operations in late
2018, predictions for that year lack corresponding training labels.

Detecting growth and disturbances. Smaller annual growth increments often fall within model
and data uncertainty, making small height changes difficult to detect reliably. Our fixed disturbance
criteria effectively capture clear-cuts and major fires but may miss gradual degradation, selective
logging, or scattered tree mortality.

Validation. GEDI’s sparse temporal coverage does not allow direct validation of year-to-year
height changes. While Section 4.2 shows our predictions follow realistic ecological growth patterns,
validation against independent repeated observations (airborne LiDAR campaigns, permanent forest
plots) is needed. The seven-year timespan (2018–2024) limits assessment of long-term dynamics
and multi-decadal carbon accumulation patterns.

10
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large language models were used to aid in writing (polishing text), generating code for plots, and
implementing standard components. No novel research ideas or results were produced by LLMs.

A.2 METHODOLOGY

A.2.1 DATA

Here we describe the used data sources and their processing in more detail. Table 2 provides an
overview.

Sentinel-2 Optical Data. We use all 12 spectral bands from Sentinel-2 L2A products, which provide
atmospheric correction and cloud probability estimates. For each year, we select one image per
calendar month based on the highest percentage of valid pixels (excluding cloudy and black pixels
as identified by the Sen2Core algorithm). The Sentinel-2 10m bands serve as the foundation for
our dataset, hence bands with 20m and 60m native resolution are upsampled to 10m using nearest
neighbor interpolation. Values are normalized to the range [-1, +1] using band-specific scaling
factors: bands 1-4 scaled from [0, 2000], bands 6-9 from [0, 6000], band 0 from [0, 1000], and
bands 5, 10-11 from [0, 4000].

Sentinel-1 Radar Data. We utilize C-band synthetic aperture radar data with 10m spatial resolu-
tion, processing quarterly median composites of VH polarization for both ascending and descending
orbits. Digital numbers are converted to backscatter coefficients (dB) and scaled from [-50, +1] to
[-1, +1]. The downloaded images from Google Earth Engine are already geospatially aligned to
the 10m Sentinel-2 bands, hence can just be stacked. To align with monthly Sentinel-2 data, each
quarterly composite is duplicated across the corresponding three months.

ALOS PALSAR-2 Radar Data. We incorporate L-band synthetic aperture radar data with 30m
spatial resolution, using yearly median composites of HH and HV polarizations. Digital numbers are
converted to backscatter coefficients (dB) and scaled from [-50, +1] to [-1, +1]. After reprojection
and upsampling using bilinear interpolation with the pixels being aligned to the Sentinel-2 10m
bands (using gdalwarp’s -tap option), the yearly composite is duplicated across all 12 months
to maintain temporal consistency.

Tandem-X Data. We utilize two products from the TanDEM-X mission: (1) a 12m resolution
digital elevation model scaled from [0, 7000m] to [-1, +1], and (2) a forest/non-forest classification
map with 3 classes normalized to [-1, +1]. Both products are duplicated across all 84 time steps (7
years × 12 months) as they represent static features.

GEDI LiDAR Ground Truth. We use GEDI L2A V2 products as ground truth labels, applying
quality filters to ensure data reliability: relative height at 98th percentile (rh98) between 0m−150m,
only high-power beams, number of detected modes >= 1, quality flag = 1, degrade flag = 0, and
sensitivity >= 0.95. These measurements provide sparse tree height estimates with approximately
25m diameter footprints. Labels are rasterized to the Sentinel-2 10m bands using the provided
geolocation of the highest return (given by lon highestreturn and lat highestreturn).
In the very rare occurence of multiple GEDI labels having the same pixel and year associated, the
maximum of them is taken. Although the GEDI diameter is often referred to as 25m, we just use the
center pixel, as the returned energy decreases rapidly when distancing from the center (see Figure 7).

To ensure training data quality and focus on forested areas, we apply additional spatial filtering using
Tandem-X data. We calculate terrain slope within a 70m radius around each GEDI measurement
and exclude locations with slopes exceeding 20◦ to avoid bare mountain areas. Additionally, we
use the Tandem-X Global Urban Footprint to remove measurements where human footprint exceeds
10%, ensuring our model trains on natural forest environments rather than urban areas.

A.2.2 TRAIN/TEST-SPLIT

Our testing dataset is created by randomly picking one area (960m× 960m) inside each Sentinel-2
tile. To limit the effect of spatial autocorrelation, we enforce a minimum distance between training
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(a) (b)

Figure 7: GEDI shot photon distribution. (a) The photon density of a single GEDI shot follows a
normal distribution across both spatial dimensions. A Sentinel-2 pixel located directly at the cen-
ter of the footprint receives 40.57% of the emitted laser energy. (b) Percentage of emitted photons
received by sample trees at different positions. A tree with a 5m radius centered directly under
the GEDI footprint receives approximately 40% of the photons, while a tree of 7m radius offset by
15m from the center receives only 4.15%. Note that these values represent emitted photon distri-
bution, not the reflected energy measured by the sensor. Actual measurements depend on material
reflectance properties, ground return proportion, and the rh98 metric extraction, requiring substan-
tially more than 2% photon coverage for counting a tree as the largest tree in a GEDI measurement.

Table 2: Data sources used in ECHOSAT with their specifications and preprocessing parameters.

Source Origin Res. CRS Resampling Bands/Channels Normalization
Sentinel-1 Google Earth Engine 10m UTM NN VH (Asc/Des) [-50, 1] in dB

Sentinel-2 AWS 10m UTM N/A All w/o B10

[0, 1000]: 0
[0, 2000]: 1–4
[0, 6000]: 6–9
[0, 4000]: 5/10/11

ALOS Palsar-2 JAXA FTP 25m EPSG:4326 Bilinear HH/HV [-50, 1] in dB

TandemX EDEM DLR Geoservice 30m EPSG:4326 Bilinear — [0, 7000]

TandemX FNF DLR Geoservice 50m EPSG:4326 NN — [0–2]

GEDI L2A NASA Earthdata ∼25m EPSG:4326 N/A rh98 —

and testing patches of at least 360m. Figure 8 shows an analysis of spatial autocorrelation for our
dataset, where the correlation is given by the Pearson product-moment correlation coefficient. The
correlation starts at ≈ 0.74 and reaches its sill at a lag between 300m and 400m at 0.55.

A.2.3 MODEL ARCHITECTURE

Here, we define the model architecture and design decisions in more detail.

Patch Embed. We implement the Patch Embed via a Conv3D layer, with kernel size and stride set
to (1, 1, 1), which is equivalent to applying a linear layer channel-wise for every pixel and every
timestep. Embedding patches of size 4 × 4 pixels, as most other contemporary approaches do it,
would lead to the model producing blurry forest borders and overlooking individual or extraordinar-
ily tall trees.

Temporal Downsample (TD) layer. The TD layer takes as input a tensor of shape Tin × Hin ×
Win × Ein and outputs a tensor of shape reduce time[lenc] ×Hin/2 × Win/2 × 2Ein. In our
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Figure 8: Analysis of spatial autocorrelation between GEDI labels in our dataset. Correlation is
given by the Pearson product-moment correlation coefficient in bins of 50m. The correlation starts
to level off at around 300m ot 400m.

model, we set reduce time = [28, 14, 7], so the time dimension is reduced from 84 to 28
by a factor of three in Encoder layer 1, and then twice by a factor of two. The temporal reduction
is implemented via a linear layer (without a bias) applied individually for every year and pixel by
concatenating all embeddings of a pixel of a given year, then linearly projecting it down to the target
temporal resolution. Afterwards, the spatial resolution is halved by concatenating the embeddings
of four spatially adjacent pixels, applying Layer Normalization (Ba et al., 2016) and then applying
another linear projection. The layer’s output is the input for the following Encoder layer, and for the
TSC layer of the corresponding Decoder layer via a skip connection.

Temporal Skip Connection (TSC) layer. The TSC layer is the Decoder-counterpart of the TD
layer. Note how the time dimension changes throughout the model: it is iteratively reduced from 84
to 7 in the Encoder, but stays 7 throughout the whole Decoder, as we need a single prediction map per
year. This prohibits the simple addition of Encoder and Decoder inputs in the TSC layer. After trying
out multiple designs, we settled on a Transformer layer, which we will now explain in detail for the
skip connection between Encoder layer 1 and Decoder layer 4. The input coming from Encoder
layer 1 has shape 84×H ×W ×E and the output of Decoder layer 4 has shape 7×H ×W ×E.
Now, we reshape and concatenate these inputs into a tensor of shape 7HW × 84+7

7 × E. For every
pixel and year (= voxel), we have 13 features, one from the decoder, the rest from the encoder. The
decoder feature of a pixel can thus attend to its encoder features of the same year, before being
passed on. After the attention we only keep the decoder token and ignore the others.

3D Window Multi-Head Self Attention (3D W-MSA). In the 3D window multi-head self attention,
each token can attend to the other tokens within the same window, which spans two tokens along the
temporal dimension and six along both spatial dimensions. In typical Video Swin Transformer fash-
ion, every other attention block is shifted in time and space dimension. Thus, every token can attend
to the 71 other tokens in the same window, 36 of which are from the previous or following timestep.
Using an efficient attention mechanism is necessary due to the otherwise quadratic complexity in the
number of pixels HW in an image. Windowed attention is a strong contender, inducing a locality
bias while sacrificing the global receptive field in return. In subsequent Encoder layers, the receptive
field of the windowed attention is progressively doubled, due to the downsampling operations.

Conv Heads. The reference head consists of a single 3D convolution that projects linearly from
the embedding dimension to a scalar per voxel. The prediction head starts with two 3D convolu-
tions with kernel size 3 in temporal and spatial dimension and keeping the embedding dimension
unchanged, followed by Group Normalization (Wu & He, 2018) and ReLU activation. Therefore,
neighboring pixels and consecutive years are able to interact with each other. The final step is a sin-
gle 3D convolution as in the reference head. The prediction head is designed to allow local spatial
and temporal interaction, in order to facilitate the precise detection of forest borders or disturbance
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Table 3: Ablation: Comparison of our approach with (GrowthLoss and a simple linear regression)
and without fine-tuning for labels from 2020 and above 5m regarding MAE (m), MSE (m2), RMSE
(m), MAPE (%), R2 and R2

all (on all labels, including labels above 5m). IQR is given in square
brackets. The pseudo-label fine-tuning with our proposed Growth-Loss (see Section 3.3) does not
affect the accuracy regarding the reference labels

.
Method MAE ↓ MSE ↓ RMSE ↓ MAPE ↓ R2 ↑ R2

all ↑
Ours (w/ GrowthLoss) 5.85 [4.90] 118.07 [36.16] 10.87 [4.90] 30.20 [33.32] 0.59 0.77
Ours (w/ Linear) 5.87 [4.89] 118.51 [36.14] 10.89 [4.89] 30.34 [33.36] 0.59 0.77
Ours (w/o fine-tuning) 5.84 [4.89] 119.36 [35.55] 10.93 [4.89] 29.44 [32.13] 0.59 0.77

locations. Without this interaction, our models tend to have problems with border detection, pre-
sumably due to geolocation uncertainty of GEDI measurements.

A.3 RESULTS

A.3.1 ABLATION: FINE-TUNING

We present an ablation study of our fine-tuning methodology, comparing the model without fine-
tuning, fine-tuning with our GrowthLoss, and fine-tuning with a simple linear regression. Table 3
shows that all three approaches yield similar results in terms of quantitative metrics, which is ex-
pected since fine-tuning only uses the pseudo-labels produced by the pretrained backbone. The
impact of fine-tuning becomes evident when examining the temporal evolution of pixel predictions
(Figure 9). Without fine-tuning, the model can capture both tree growth and cutting events, but ex-
hibits unwanted height fluctuations. Linear regression fine-tuning smooths tree growth predictions
but fails to properly capture disturbances. Fine-tuning with our GrowthLoss, in contrast, reduces un-
certainty in growth pixels, detects disturbances more accurately, and minimizes height fluctuations
in disturbance border areas.

A.3.2 YEAR-WISE EVALUATION

Table 4 presents MAE, MSE, RMSE, MAPE, and two R2 metrics for our ECHOSAT maps for each
year individually. Errors show a gradual decrease over time, which may suggest that recent years are
easier to predict, but could also reflect improvements in GEDI label processing by NASA. A similar
pattern is observed when examining errors across different height bins for each year (Figure 10).

Table 4: Year-wise comparison on error metrics regarding MAE (m), MSE (m2), RMSE (m), MAPE
(%), R2 and R2

all (on all labels, including labels below 5m). IQR is given in square brackets.

Year MAE ↓ MSE ↓ RMSE ↓ MAPE ↓ R2 ↑ R2
all ↑

2019 6.09 [5.25] 123.44 [40.48] 6.09 [5.25] 0.30 [0.34] 0.59 0.77
2020 5.85 [4.90] 118.07 [36.16] 5.85 [4.90] 0.30 [0.33] 0.59 0.77
2021 5.41 [4.71] 96.03 [33.49] 5.41 [4.71] 0.30 [0.33] 0.63 0.79
2022 5.24 [4.75] 85.37 [34.34] 5.24 [4.75] 0.29 [0.31] 0.66 0.82
2023 5.56 [4.94] 102.86 [35.77] 5.56 [4.94] 0.29 [0.31] 0.62 0.79
2024 4.77 [4.26] 72.01 [27.78] 4.77 [4.26] 0.28 [0.28] 0.68 0.83

A.3.3 SPATIAL DISTRIBUTION OF ERRORS

Figure 11 (a) shows a global map where the average error in each region is indicated by color
(darker colors correspond to higher errors). Because height and error are closely correlated (as
seen in Figure 5 and Table 5 for labels < 5m), this map primarily reflects the average tree height
per region. Figures 11 (b–g) show the same map broken down into 5m height bins. While errors
generally increase with height, the relatively small errors for large trees in the Amazonas rainforest
and Congo Basin may indicate lower structural heterogeneity in these forests, making them easier
to predict.
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Table 5: Comparison of global-scale methods for 2020 only for labels below 5m regarding MAE
(m), MSE (m2), RMSE (m), MAPE (%), R2 and R2

all (on all labels, including labels above 5m).
Please note that while GEDI measures ground elevation between 2m and 3m, Tolan et al. (2024);
Lang et al. (2023); Potapov et al. (2021) either use other labels or manually set their ground predic-
tions to 0m, thereby making a comparison here ineffective.

Method MAE ↓ MSE ↓ RMSE ↓ MAPE ↓ R2 ↑ R2
all ↑

Potapov et al. (2021) 2.84 [0.56] 9.08 [3.08] 3.01 [0.56] 98.20 [0.00] 0.26 0.70
Lang et al. (2023) 3.04 [0.71] 13.30 [3.95] 3.65 [0.71] 104.08 [0.00] 0.28 0.71
Pauls et al. (2024) 1.08 [0.96] 2.99 [1.73] 1.73 [0.96] 37.04 [31.31] 0.49 0.73
Tolan et al. (2024) 2.87 [0.60] 8.93 [3.32] 2.99 [0.60] 99.04 [0.00] 0.16 0.64
Ours 0.51 [0.42] 1.82 [0.24] 1.35 [0.42] 15.99 [13.12] 0.39 0.77

A.3.4 LIDAR COMPARISON

Validating large-scale tree-height products remains challenging. GEDI provides global coverage,
though with some noise and uncertainty, while airborne LiDAR (ALS) offers higher accuracy but
is spatially sparse, biased toward well-surveyed regions, and rarely has temporal revisits suitable
for year-to-year evaluation. For these reasons, GEDI remains the most practical benchmark for a
global-scale study.

To provide additional context, we include an evaluation using ALS-derived labels in the Landes
forest (France) from the LiDAR HD campaign (Figure 12). These results confirm local accuracy
but are specific to this region and do not generalize globally. While ALS comparisons are valuable,
systematic multi-region ALS validation is beyond the scope of this work.
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Figure 9: Sentinel-2 time series and temporal tree height prediction for five neighbouring pixels
around a disturbance for the pretrained model (Left), our model (Middle) and model fine-tuned with
a single linear regression model (Right). The simple linear regression model is fine-tuned on pseudo-
labels produced by a linear interpolation of the pretrained model’s predictions.
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Figure 10: Error distribution analysis across height classes (5m bins) for ECHOSAT predictions
and different years. Boxplots show mean absolute error for each height class. The errors for smaller
trees are very similar, with higher trees showing earlier years as being slightly more difficult than
recent years.
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Figure 11: Spatial distribution of errors for all labels (a) and different height bins (b-g). a) strongly
correlates with known areas of taller trees (i.e. higher errors, see Figure 5), small trees (b-c) generally
have low errors globally, whereas errors systematically growth with tree height (d-g). Interestingly,
(1) the east coast of North America has lower errors compared to other areas and (2) the Amazonas
rainforest and Congo Basin, known for tall trees, have smaller errors (g) compared to other regions.
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Figure 12: Density scatterplot between ALS tree height labels and ECHOSAT predictions in the
Le Landes forest plantation area in France. LiDAR campaigns are from the LiDAR HD of the
French Geoservices and have been reprojected and downsampled to 10m and EPSG:32630 using
max pooling. The prediction is taken from the corresponding year of the ALS campaign. As our
model is only trained with GEDI labels and GEDI labels cannot differentiate between small trees,
bushes and ground elevation, it sets the minimum height to ≈ 3m. Bright colors indicate higher
density.
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A.4 MODEL HYPERPARAMETERS

Table 6: Hyperparameters used for model training. Some parameters differ between pretraining and
finetuning, while most remain unchanged.

Parameter Symbol Value
Pretraining Finetuning

Number of years Y 7

Number of timesteps T 84 (= Y ·Months)
Number of input channels C 18

Embedding dimension E 72

Height / Width (in pixels) H / W 96

Encoder depths depth[lenc] [6, 4, 4, 6]

Decoder depths depth[ldec] [4, 6, 8, 16]

Attention heads [4, 8, 12, 24]

Temporal window size 2

Spatial window size 6

Embedding patch size PH×PW×PT 1× 1× 1

Optimizer AdamW

Maximum learning rate 1× 10−4 3× 10−3

Learning rate linear warmup 30%
Learning rate schedule Cosine Annealing
Gradient clipping 1

Number of iterations 400k 47k

Loss Lhuber(·) Lgrowth(·)
Batch size 16 8
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